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CHAPITRE 1

Fondements de la théorie des probabilités

1.1. Événements

Nous commençons par présenter les fondements axiomatiques de la théorie des pro-
babilités.

Définition 1.1. L’ensemble des réalisations possibles d’une expérience est appelé
univers de l’expérience. Il est généralement noté Ω.

Exemple 1.2. On tire une fois à pile ou face. Il est naturel de considérer Ω = {p, f}
où p et f sont les réalisations de l’expérience qui correspondent aux tirages respectifs de
pile et de face. Voici quelques événements :

(a) la réalisation est face

(b) la réalisation est face ou pile

(c) la réalisation est face et pile simultanément

(d) la réalisation n’est pas face

Ces événements peuvent être décrits respectivement par les parties A de Ω suivantes :

(a) A = {f}
(b) A = {f} ∪ {p} = {f, p} = Ω

(c) A = {f} ∩ {p} = ∅
(d) A = {f}c = {p}

où Ac désigne le complémentaire de la partie A dans Ω.

Exemple 1.3. On lance un dé une fois. Il est naturel de considérer Ω = {1, 2, 3, 4, 5, 6}
dont les éléments correspondent aux différentes facettes du dé. Voici quelques événe-
ments :

(a) la réalisation est 1

(b) la réalisation est un nombre pair

(c) la réalisation est un nombre pair inférieur à 3

(d) la réalisation n’est pas un nombre pair

Ces événements peuvent être décrits respectivement par les parties A de Ω suivantes :

(a) A = {1}
(b) A = {2, 4, 6}
(c) A = {2, 4, 6} ∩ {1, 2, 3} = {2}
(d) A = {2, 4, 6}c = {1, 3, 5}
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2 1. FONDEMENTS DE LA THÉORIE DES PROBABILITÉS

Si A et B sont des événements qui correpondent respectivement aux réalisations
effectives a et b, on peut avoir besoin de considérer les événements composés :

a 99K A
b 99K B
non a 99K Ac

a et b 99K A ∩B
a mais pas b 99K A \B
a ou b 99K A ∪B
a ou bien b 99K A△B

où
– A \ B = A ∩ Bc est la différence A moins B, c’est-à-dire l’ensemble des éléments

qui se trouvent dans A mais pas dans B;
– A△B = (A ∪ B) \ (A ∩ B) est la différence symétrique de A et B, c’est-à-dire

l’ensemble des éléments qui se trouvent soit dans A, soit dans B, mais pas simul-
tanément dans A et B.

A \B

A ∩B

B \ AA

B

La région colorée est A∆B = (A \B) ∪ (B \A). Remarquons la différence entre ou bien
qui est exclusif et ou qui ne l’est pas et correspond à la réunion A ∪B.

Si A∩B = ∅, on dit que les événements sont incompatibles, ∅ est l’événement impos-
sible et Ω est l’événement certain.

L’ensemble de tous les événements est noté A, il est inclus dans l’ensemble de toutes
les parties de Ω notée 2Ω. Cette notation est justifiée par l’exercice suivant.

Exercice 1.4. En considérant l’ensemble des applications {oui, non}Ω de Ω dans
{oui, non}, montrer que lorsque le cardinal de Ω est n, celui de 2Ω est 2n.

Lorsque Ω n’est pas un ensemble dénombrable (voir la Définition A.1), pour des
raisons subtiles (qui ne sont pas aisément compréhensibles au niveau de ce cours) on ne
pourra pas en général prendre A = 2Ω. Compte tenu de ce qui précède, A doit au moins
satisfaire :

(1) A,B ∈ A =⇒ A ∪B ∈ A et A ∩B ∈ A
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(2) A ∈ A =⇒ Ac ∈ A
(3) ∅ ∈ A.

Exemple 1.5. On répète notre lancer de pile ou face jusqu’à ce qu’on obtienne
pile. L’univers est alors Ω = {ω1, ω2, . . .} avec ω1 = p, ω2 = fp, ω3 = ffp, . . . La
réalisation ωi est : "on observe pile pour la première fois au i-ème lancer". L’ensemble
correspondant à l’événement : "l’instant de première apparition de pile est pair" est
A = {ω2} ∪ {ω4} ∪ {ω6} ∪ . . . , c’est une réunion infinie dénombrable. Cette remarque
justifie la définition suivante.

Définition 1.6. Un ensemble A de parties de Ω est appelée une tribu (ou une σ-
algèbre) si

(1) A1, A2, · · · ∈ A =⇒ ⋃∞
i=1Ai := {ω ∈ Ω;∃i ≥ 1, ω ∈ Ai} ∈ A

(2) A ∈ A =⇒ Ac ∈ A
(3) ∅ ∈ A

Les éléments de A (ce sont des parties de Ω) sont appelés des événements.

Exemple 1.7 (Exemples de tribus).

(a) A = {∅,Ω} (c’est la plus petite tribu)

(b) A = 2Ω (c’est la plus grande tribu)

(c) Si A ⊂ Ω, A = {∅, A,Ac,Ω}.
À une expérience, on associe le couple (Ω,A) où A est une tribu de Ω. Dire que A

est un événement, c’est dire : A ∈ A.
Remarque 1.8.

Lorsque Ω est un ensemble dénombrable (en particulier fini), on prend toujours
pour tribu A = 2Ω : l’ensemble de toutes les parties de Ω.

1.2. Probabilité

Si on note P(A) la probabilité d’occurence d’un événement A ∈ A, on attend que :
– 0% = 0 ≤ P(A) ≤ 1 = 100% (par convention)
– P(Ω) = 1 (condition de normalisation)
– pour tous A,B ∈ A, si A ∩B = ∅ alors P(A ∪B) = P(A) + P(B) (additivité)
Comme nous l’avons déjà remarqué, il peut être utile de considérer des événements

constitués par une réunion dénombrable d’événements disjoints A1, A2, . . . On note dans
de cas leur réunion

⋃∞
i=1Ai =

⊔∞
i=1Ai pour mettre l’emphase sur leur disjonction qui

signifie : ∀i, j, i 6= j ⇒ Ai ∩ Aj = ∅. D’où la définition suivante.

Définition 1.9. Une mesure de probabilité P sur (Ω,A) est une fonction P : A →
[0, 1] qui satisfait :

(1) P(Ω) = 1

(2) si A1, A2, . . . est une suite d’événements disjoints, alors :

P

( ∞⊔

i=1

Ai

)
=

∞∑

i=1

P(Ai).
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Le triplet (Ω,A,P) est appelé un espace de probabilité.

Il provient immédiatement de cette définition,
– en choisissant A1 = A2 = ∅, que 0 ≤ P(∅) = limn→∞ nP(∅) et par conséquent

P(∅) = 0;
– en choisissant A1 = A, A2 = B et A3 = A4 = · · · = ∅, que pour tous A,B ∈ A

disjoints, P(A ⊔B) = P(A) + P(B).
– Il en va de même pour toute réunion d’un nombre fini d’événements disjoints :

P

( n⊔

i=1

Ai

)
=

n∑

i=1

P(Ai).

Exemples 1.10.

(a) Pile ou face correspond à Ω = {f, p}, avec A = {∅, {f}, {p},Ω} et P(∅) = 0,
P({f}) = P({p}) = 1/2, P(Ω) = 1.

(b) Un lancer de dé éventuellement pipé peut se modéliser comme suit : Ω =
{1, 2, . . . , 6}, A = 2Ω et P({i}) = pi ≥ 0, 1 ≤ i ≤ 6 avec p1 + · · · p6 = 1.
Pour tout A ⊂ Ω, nous obtenons P(A) =

∑
i∈A pi.

(c) Si le dé est honnête, p1 = · · · = p6 = 1/6 et P(A) = #(A)/6 où #(A) désigne le
cardinal de A.

Voici quelques conséquences immédiates de la définition de P.

Lemme 1.11. Pour tous A,B ∈ A, nous avons

(1) P(Ac) = 1− P(A)

(2) A ⊂ B =⇒ P(B) = P(A) + P(B \ A) ≥ P(A)

(3) P(A ∪B) = P(A) + P(B)− P(A ∩B)

Démonstration. Laissée en exercice. �

Définition 1.12 (Masse de Dirac). Soit a ∈ Ω. On définit la fonction d’ensembles
δa : A → {0, 1} par

δa(A) =

{
1 si a ∈ A
0 sinon

, A ∈ A

On appelle δa la masse de Dirac au point a.

Exercice 1.13.

(a) Vérifier que δa est une mesure de probabilité sur A.
(b) Si on prend trois éléments distincts a, b et c de Ω, alors P = 1

7
δa+ 4

7
δb+

2
7
δc est aussi

une mesure de probabilité.

(c) Montrer que P({a, b}) = 5/7 et calculer P({a, c}).
La mesure de probabilité P = 1

7
δa+

4
7
δb+

2
7
δc de l’exercice précédent modélise l’expé-

rience qui attribue les chances d’occurence 1/7, 4/7 et 2/7 aux réalisations élémentaires
a, b et c.
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Exemple 1.14. On se donne une urne contenant 3 boules rouges appelées ω1, ω2 et
ω3, 2 bleues appelées ω4, ω5 et 1 verte : ω6. On tire au hasard une boule et on note sa
couleur.
On peut prendre Ω = {ω1, . . . , ω6} avec P(ωn) = 1/6, n = 1, . . . , 6 puisque notre intuition
nous suggère l’équiprobabilité. Bien sûr, on choisitA = 2Ω et on obtient pour tout A ⊂ Ω,
P(A) = #(A)/6. On constate que

P =
6∑

n=1

1

6
δωn .

Notons les événements R = {ω1, ω2, ω3}, B = {ω4, ω5}, V = {ω6} correspondant au
tirage d’une boule rouge, bleue ou verte. On voit que P(B) = 1/6

∑6
n=1 δωn(B) =

1/6
∑6

n=1 δωn({ω4, ω5}) = (0 + 0 + 0 + 1 + 1 + 0)/6 = 1/3.
Si on n’est concerné que par la couleur de la boule, on peut prendre l’univers Ω′ = {r, b, v}
munit de la mesure de probabilité P′ = P(R)δr + P(B)δb + P(V )δv = 1

2
δr + 1

3
δb + 1

6
δv.

Lorsque Ω est l’ensemble dénombrable Ω = {ωn; n ≥ 1}, toute mesure de probabilité
sur A = 2Ω est de la forme

(1.15) P =
∑

n≥1

pnδωn

où (pn)n≥1 est tel que pn ≥ 0,∀n et
∑

n≥1 pn = 1. L’interprétation de cette formule est :
P({ωn}) = pn, n ≥ 1.

Notre premier résultat concernant une quantité infiniment dénombrable d’opérations
sur les événements est le suivant.

Lemme 1.16.

(1) Soient A1, A2, . . . une suite croissante (pour la relation d’inclusion) de A : A1 ⊂
A2 ⊂ · · · et A =

⋃∞
n=1An = {ω ∈ Ω;∃i ≥ 1, ω ∈ Ai} sa limite. Alors

P(A) = lim
n→∞

P(An).

(2) Soient B1, B2, . . . une suite décroissante (pour la relation d’inclusion) de A :
B1 ⊃ B2 ⊃ · · · et B =

⋂∞
n=1Bn = {ω ∈ Ω;∀i ≥ 1, ω ∈ Ai} sa limite. Alors

P(B) = lim
n→∞

P(Bn).

Démonstration. Puisque (An)n≥1 est une suite croissante,

A1

A2

A =
⋃
i≥1Ai

A3

A2 \ A1
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A = A1 ⊔ (A2 \A1)⊔ (A3 \A2)⊔ · · · est la réunion disjointe d’une famille d’événements.
Par conséquent,

P(A) = P(A1) +
∞∑

i=1

P(Ai+1 \ Ai)

= P(A1) + lim
n→∞

n−1∑

i=1

[P(Ai+1)− P(Ai)]

= lim
n→∞

P(An)

Pour le résultat concernant la famille décroissante, passer aux complémentaires en
utilisant la relation (A ∪B)c = Ac ∩Bc. �

Exemple 1.17. On joue indéfiniment à pile ou face jusqu’à ce qu’on obtienne pour
la première fois pile. Le premier instant d’obtention de pile est un entier qui peut être
arbitrairement grand. On doit donc prendre un univers Ω de cardinal infini. Un bon choix
est Ω = {p, f}{1,2,...} : l’ensemble des suites ω = ω1ω2 . . . ωn . . . constituées des lettres p et
f avec l’interprétation que ωn = p signifie qu’on a obtenu pile au n-ième lancer. Notons
que nous choisissons un univers Ω différent de celui de l’Exemple 1.5, pour modéliser la
même expérience.

L’événement qui correspond à l’obtention pour la première fois de pile au n-ième
lancer est Pn = {ω ∈ Ω; ω1 = · · · = ωn−1 = f, ωn = p}. C’est un ensemble infini qui
a le même cardinal que Ω puisque seul le début des suites ω est spécifié (Exercice : le
prouver). Il est naturel de demander lors de notre modélisation de cette expérience que
P(Pn) = 2−n puisqu’il y a 2n mots de longueur n constitués des lettre p et f et que
chacun de ces mots qui code la réalisation de n lancers de pile ou face doit avoir la même
probabilité (situation d’équiprobabilité).

Soit Bn = {ω ∈ Ω; ω1 = · · · = ωn = f} =
⊔
i≥n+1 Pi l’événement "il n’y a pas eu

pile pendant les n premiers lancers". L’additivité des probabilités d’événements disjoints
s’écrit P(Bn) =

∑∞
i=n+1 P(Pi) c’est-à-dire 2−n =

∑∞
i=n+1 2i. On vient de retrouver une

formule bien connue.
La suite (Bn)n≥1 est décroissante avec

⋂
n≥1Bn = P∞ = {ω̃} où ω̃ = ffff . . . est

la suite constituée de f uniquement : l’événement "pile n’apparait jamais". Le lemme
précédent nous assure de P(P∞) = limn→∞ 2−n = 0. C’est-à-dire que P(ω̃) = 0. En
d’autres termes, avec cette modélisation de l’expérience, on conclut que l’événement
complémentaire "pile finit par apparaître" est de probabilité 1− 0 = 1; il est certain.

Un paradoxe. Compte tenu de la symétrie de notre modélisation, tous les ω sont équipro-
bables : ∀ω ∈ Ω, P(ω) = P(ω̃) = 0. Or la “somme" des probabilités de tous les événements
élémentaires doit être égale à 1 : “

∑
ω∈Ω ”P(ω) = 1. Ce qui nous mène à “

∑
ω∈Ω ”0 = 1.

Une somme de zéros égale à un ! Cette somme ne peut donc pas être la somme d’une
série car

∑
n∈N

0 = 0. C’est la raison pour laquelle on a mis “
∑

” entre guillemets. On
lève le paradoxe en se rappelant que Ω est un ensemble non-dénombrable (voir le Lemme
A.7-2), c’est-à-dire qu’il ne peut pas être mis en injection dans N, il est beaucoup plus
gros. De ce fait “

∑
ω∈Ω ” est une opération indéfinie ; en particulier elle n’est pas une

série.



CHAPITRE 2

Variables aléatoires

Pour définir une variable aléatoire, seul (Ω,A) suffit. On laisse P de côté pour le
moment. On se donne (Ω,A).
Essentiellement, une variable aléatoire est une fonction numérique sur l’univers Ω souvent
notée X : Ω→ R.

Exemple 2.1. On joue deux fois de suite à pile ou face. Notre univers est Ω =
{pp, pf, fp, ff} (l’ordre des lancers est pris en compte). Le nombre d’apparitions de pile

est la variable aléatoire suivante

X(ω) =





2 si ω = pp
1 si ω ∈ {pf, fp}
0 si ω = ff

Exemple 2.2. On jette une flèche par terre et on note l’angle de sa direction avec le
nord magnétique. Une telle expérience peut être décrite à l’aide de Ω = [0, 2π[. Quant
à la tribu A, contentons-nous de dire qu’elle contient entre autres toutes les réunions
dénombrables d’intervalles. L’application

X(ω) = ω, ω ∈ [0, 2π[

est la variable aléatoire qui correspond à l’angle de la flèche. Si l’on considère le cosinus
de cet angle : Y = cosX, on obtient à nouveau une variable aléatoire sur (Ω,A).
Nous reviendrons sur la question du choix de P à l’Exemple 2.7.

Il est très pratique d’introduire la notation suivante

{ω ∈ Ω; X(ω) ∈ C} := {X ∈ C}, C ⊂ R.

En particulier, nous noterons {ω ∈ Ω; X(ω) ≤ x} = {X ≤ x}.
Définition 2.3. Une application X : Ω→ R est une variable aléatoire réelle si pour

tout x ∈ R, l’ensemble {X ≤ x} appartient à A.
Lorsque Ω est dénombrable on prend A = 2Ω et bien sûr toute fonction numérique X

sur Ω est une variable aléatoire. Mais lorsque Ω n’est pas dénombrable, comme c’est le
cas dans l’Exemple 2.2, pour des raisons techniques délicates d’une difficulté dépassant
le niveau de ce cours, on ne peut pas considérer toutes les fonctions numériques X sur
Ω mais seulement celles qui sont spécifiées dans la définition précédente.

Remarques 2.4.

(1) Notons que X est une fonction. Elle n’est donc ni variable, ni aléatoire ! Le vo-
cable variable aléatoire date du début de la théorie des probabilités avec Pierre
de Fermat ( ?-1665) et Blaise Pascal (1623-1662), bien avant que les mathéma-
tiques soient formalisées. Il faut donc prendre l’expression variablaléatoire sans
lui accorder une portée sémantique – n’hésitez pas à ouvrir votre dictionnaire.

7



8 2. VARIABLES ALÉATOIRES

(2) Les premières formalisations rigoureuses de la théorie des probabilités datent du
début du vingtième siècle. Nous pratiquons celle de Kolmogorov, mathématicien,
physicien, génial et soviétique.

2.1. Fonction de répartition

Dès lors que l’on réintroduit la mesure de probabilité P, le comportement aléatoire
de X peut être quantifié. L’objet fondamental de cette description est la fonction de
répartition.

Définition 2.5. On se donne (Ω,A,P) et une variable aléatoire X sur (Ω,A). La
fonction de répartition de X est définie par

FX(x) = P(X ≤ x), x ∈ R.

Notons que pour pouvoir écrire P(X ≤ x), il faut que X soit une variable aléatoire
au sens de la Définition 2.3.

Exemple 2.6. On reprend la variable aléatoire X de l’Exemple 2.1. Notre espace
probabilisé est (Ω,A,P) avec Ω = {pp, pf, fp, ff}, A = 2Ω et P(pp) = P(pf) = P(fp) =
P(ff) = 1/4. Nous avons bien sûr, P(X = 0) = P(X = 2) = 1/4 et P(X = 1) = 1/2. La
fonction de répartition de X est

FX(x) =





0 si x ∈]−∞, 0[
1/4 si x ∈ [0, 1[
3/4 si x ∈ [1, 2[
1 si x ∈ [2,+∞[

et son graphe est

0

1

x

y

1 2

p0 = 1/4

p1 = 1/2

p2 = 1/4

| |

1/4

3/4

|

Représentation graphique de y = FX(x)

On constate que FX ne croît que pour les valeurs effectivement fréquentées par X : 0, 1 et
2. La hauteur de chacune des marches est respectivement p0 = P(X = 0), p1 = P(X = 1)
et p2 = P(X = 2).

Exemple 2.7 (suite de l’Exemple 2.2). Compte tenu de la symétrie de l’expérience,
il semble raisonnable d’en modéliser le hasard à l’aide de la mesure de probabilité qui
satisfait P(]a, b[) = (b− a)/(2π), 0 ≤ a < b < 2π. Soient X(ω) = ω et Y (ω) = cosω. Les
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fonctions de répartition de X et Y sont

FX(x) =





0 si x ≤ 0
x/(2π) si 0 ≤ x < 2π
1 si x ≥ 2π

et

FY (y) =





0 si y < −1
1− (arccos y)/π si − 1 ≤ y < 1
1 si y ≥ 1

En effet, pour 0 ≤ x < 2π

FX(x) = P(X ≤ x)

= P({ω ∈ Ω; 0 ≤ ω ≤ x}) = P([0, x]) = x/(2π)

0 1 x

z

1

Représentation graphique de z = FX(x)

et pour −1 ≤ y < 1

y 1−1 0

arccos y
2(π − arccos y)

FY (y) = P(Y ≤ y)

= P({ω ∈ Ω; cosω ≤ y}) = P(X ∈ [−(π − arccos y), π − arccos y])

= 2(π − arccos y)/(2π) = 1− (arccos y)/π

0−1 1 y

z

1

Représentation graphique de z = FY (y)

Les fonctions de répartition jouissent d’un certain nombre de propriétés.

Proposition 2.8. Une fonction de répartition F possèdent les propriétés suivantes :

(1) limx→−∞ F (x) = 0 et limx→∞ F (x) = 1,



10 2. VARIABLES ALÉATOIRES

(2) F est croissante

(3) pour tous a < b, P(a < X ≤ b) = F (b)− F (a)

(4) F est continue à droite

Démonstration. • Preuve de (1). Soit Bn = {X ≤ −n}. Alors B1, B2, . . . est une
suite décroissante d’événements de limite vide. Par conséquent, grâce au Lemme 1.16,
limn→∞ P(Bn) = P(∅) = 0. Pour l’autre limite, considérer An = {X ≤ n}.
• Preuve de (2) et (3). Soient a < b et A(a) = {X ≤ a}, A(a, b) = {a < X ≤ b}. Alors,
A(b) = A(a) ⊔ A(a, b) est une union disjointe, de sorte que

P(A(b)) = P(A(a)) + P(A(a, b))

d’où il vient que
F (b) = F (a) + P(a < X ≤ b) ≥ F (a)

qui est (3) et prouve (2).

• Preuve de (4). Avec la notation précédente, pour tout a ∈ R, A(a, a+h) décroît vers le
vide lorsque h > 0 décroît vers zéro. Par conséquent, grâce à (3), limh↓0 F (a+h)−F (a) =

limn→∞ F (a+1/n)−F (a) = limn→∞ P(X ∈]a, a+1/n])
(∗)
= P(X ∈ limn→∞]a, a+1/n]) =

P(X ∈ ∅) = 0, où l’égalité (∗) est une conséquence du Lemme 1.16 et l’existence de la
limite limh↓0 F (a+ h) est garantit par le croissance de F démontrée au point (2). �

Le résultat suivant montre que la fonction de répartition permet d’évaluer la proba-
bilité P(X ∈ I) pour n’importe quel intervalle I.

Proposition 2.9. Soient −∞ ≤ a ≤ b ≤ +∞. Alors,

(1) P(X ∈]a, b]) = FX(b)− FX(a);

(2) P(X ∈ [a, b]) = FX(b)− FX(a−);

(3) P(X ∈]a, b[) = FX(b−)− FX(a);

(4) P(X ∈ [a, b[) = FX(b−)− FX(a−)

où FX(c−) := limx↑c FX(x) est la limite à gauche de FX en c et par convention FX(−∞) :=
limx→−∞ = 0 et FX(+∞) := limx→+∞ FX(x) = 1, d’après la Proposition 2.8-(1).

On notera que la limite à gauche FX(c−) existe puisque FX est une fonction croissante
de sorte que limx↑c FX(x) = supx<c FX(x).

Démonstration. • Preuve de (1). Dans ce cas, b < ∞. Lorsque a = −∞, c’est
évident et lorsque a est fini, ce résultat a été obtenu à la Proposition 2.8.

• Preuve de (2). Dans ce cas, a et b sont finis. Puisque, [a, b] =
⋂
n≥1]a − 1/n, b] on

a {X ∈ [a, b]} =
⋂
n≥1{X ∈]a − 1/n, b]} et on obtient à l’aide de (1) et du Lemme

1.16, P(X ∈ [a, b]) = limn→∞ P(X ∈]a − 1/n, b]) = limn→∞ FX(b) − FX(a − 1/n) =
FX(b)− FX(a−).

• Preuve de (3). Prenons a = −∞. Si b = ∞, le résultat est évident et si b < ∞,
P(X ∈] − ∞, b[) = P(X ∈ ⋃n≥1] − ∞, b − 1/n]) = limn→∞ P(X ∈] − ∞, b − 1/n]) =

limn→∞ FX(b−1/n) = FX(b−). Lorsque a est fini, P(X ∈]a, b[) = P(X ∈]−∞, b[)−P(X ∈
]−∞, a]) = FX(b−)− FX(a).

• Preuve de (4). Dans ce cas a est fini et en tenant compte de (3), P(X ∈ [a, b[) =
limn→∞ P(X ∈]a− 1/n, b[) = limn→∞ FX(b−)− FX(a− 1/n) = FX(b−)− FX(a−). �
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2.2. Variables aléatoires discrètes

Commençons par rappeler la définition d’une variable aléatoire discrète.

Définition 2.10. La variable aléatoire X est dite discrète si elle prend ses valeurs
dans une partie dénombrable {xn;n ∈ N} de R où N est un ensemble d’indices.

Rappelons que certains des résultats les plus simples au sujet de la dénombrabilité
sont présentés en Annexe A.

Remarques 2.11.

(1) Bien sûr, on peut sans restriction supposer que les xn sont tous distincts.

(2) Puisque N est dénombrable, on peut choisir N = {1, . . . , K} si X prend K =
#(X(Ω)) <∞ valeurs ou bien N = {1, 2, . . .} si X prend une infinité de valeurs.

Exemples 2.12.

(1) La variable aléatoire de l’Exemple 2.1 est discrète.

(2) On note X le premier instant d’obtention de pile dans l’Exemple 1.17. C’est une
variable aléatoire à valeurs dans {1, 2, . . .} ∪ {∞} où X = ∞ signifie que pile

n’apparaît jamais. On a vu que P(X =∞) = 0 de sorte que X est effectivement
à valeurs dans R et qu’on peut considérer sa fonction de répartition. On a déjà
vu que pour tout n ≥ 1, P(X = n) = P(Bn) = 2−n. La représentation graphique
de FX est

| | |
0

1

1 2 3 4

1/2

1/4

1/8

1/2

1/2+1/4=3/4 |
|

x

y

Représentation graphique de y = FX(x)

Comme nous allons le voir, de telles fonctions de répartition sont typiques des va-
riables discrétes.

Le comportement d’une variable discrète X est décrit par la donnée de (xn, pn)n∈N
où les xn sont supposés distincts et pn := P(X = xn) ≥ 0. Du fait que 1 = P(X ∈ R),
nous obtenons la condition de normalisation

(2.13)
∑

n∈N
pn = 1.

On peut toujours choisir pour N une partie de Z constituée de nombres consécutifs de
sorte que les valeurs de X soient rangées par ordre croissant : · · · < xn−1 < xn < xn+1 <
· · · . À l’aide de la Proposition 2.8-(3), on voit que P(X = xn) = P(xn−1 < X ≤ xn) =
FX(xn)− FX(xn−1), soit

(2.14) pn = FX(xn)− FX(xn−1), n ∈ N
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avec les conventions x(inf(N)−1) = −∞ et FX(−∞) = 0. De plus, pour tous xn−1 ≤ x ≤
y < xn, nous avons 0 ≤ FX(y) − FX(x) = P(x < X ≤ y) ≤ P(xn−1 < X < xn) = 0.
Par conséquent FX(x) = FX(y), ce qui signifie que FX est constante sur les intervalles
semi-ouverts [xn−1, xn[. La forme générale de FX est donc

| | |
0 xn−1 xn xn+1 x

1

pn−1

pn

pn+1

y

Représentation graphique de y = FX(x)

Une telle fonction de répartition est dite atomique : c’est-à dire qu’elle est constante
entre ses discontinuités qui sont des sauts positifs.

2.3. Variables aléatoires continues

La situation précédente est radicalement différente de celle des variables aléatoires
continues.

Définitions 2.15.

(1) Une fonction numérique est dite continue par morceaux si tous ses points de
discontinuité sont isolés. Ceci signifie que pour tout point de discontinuité il
existe un intervalle ouvert qui le contient et ne contient pas d’autre point de
discontinuité.

(2) La variable aléatoire X est dite continue si sa fonction de répartition peut s’écrire
sous la forme

(2.16) FX(x) =

∫ x

−∞
fX(u) du, x ∈ R

pour une certaine fonction fX : R→ [0,∞[ continue par morceaux et intégrable.

(3) Dans ce cas, la fonction fX est appelée fonction de densité de la variable aléatoire
X.

Exemple 2.17 (suite de l’Exemple 2.7). On constate que X et Y sont continues
puisque

FX(x) =

∫ x

−∞
fX(u) du, FY (y) =

∫ y

−∞
fY (u) du

avec les fonctions de densité

fX(x) =

{
1/(2π) si x ∈ [0, 2π]
0 sinon

, fY (y) =

{
1/(π

√
1− y2) si y ∈ [−1, 1]

0 sinon
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|

0

1/(2π)

2π x

z

Représentation graphique de z = fX(x)

0 1 y

z

−1

Représentation graphique de z = fY (y)

Par souci de lisibilité, ces deux représentations ne sont pas à la même échelle. Notons
l’explosion en -1 et 1 de la densité de Y.

Remarques 2.18.

(1) Il est clair que la fonction de répartition FX d’une variable continue est continue.
En fait, elle est un peu plus régulière : des fonctions FX qui admettent une
représentation (2.16) sont dites absolument continues.

(2) Si fX est elle-même continue, FX est dérivable (de classe C1) et F ′
X = fX .

(3) Remarquons que FX n’est pas dérivable aux points de discontinuité de fX .

Si X est une variable aléatoire continue, FX est une fonction continue et toutes les
expressions des membres de droite des égalités de la Proposition 2.9 sont égales. On en
déduit immédiatement le

Corollaire 2.19. Si X est une variable aléatoire continue de densité fX , pour tous
a ≤ b nous avons

P(X ∈]a, b]) = P(X ∈ [a, b]) = P(X ∈]a, b[)

= P(X ∈ [a, b[) =

∫ b

a

fX(x) dx.

Lorsque X est continue, on notera parfois P(X ∈ (a, b)) chacune des quantités égales
P(X ∈]a, b]) = P(X ∈ [a, b]) = P(X ∈]a, b[) = P(X ∈ [a, b[).

x

y

y = fX(x)

0 a b

aire=
∫ b
a
fX(x) dx = P(X ∈ (a, b))
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En se souvenant de la définition de l’intégrale de Riemann comme limite de sommes de
Darboux, on obtient en tout point x de continuité de la densité fX que lorsque h ≥ 0

tend vers zéro, P(X ∈ (x, x+ h)) =
∫ x+h
x

fX(t) dt = fX(x)h+ η(h)h où limh→0 η(h) = 0.
De façon informelle, on traduit ceci par

(2.20) P(X ∈ (x, x+ h)) ≈
h→0

fX(x)h.

x

y

y = fX(x)

0
xo

aire= fX(xo)h ≈ P(X ∈ (xo, xo + h))

ǫ(h)

xo + h

aire≈ hǫ(h)/2

fX(xo)

h

On constate donc que la variable aléatoire X a plus de chance de prendre des valeurs dans
les régions où fX est grande. En particulier, X ne prend pas de valeur dans l’ensemble
{fX = 0} := {x ∈ R; fX(x) = 0}.

Bien évidemment, puisque 1 = P(Ω) = P(X ∈ R), nous avons toujours la condition
de normalisation

(2.21)
∫

R

fX(x) dx = 1.

qui est l’analogue de (2.13).

2.4. Quelques éléments de réflexion

Nous concluons ce chapitre en donnant un exemple de variable aléatoire qui n’est ni
continue, ni discrète ; ainsi qu’une remarque au sujet de la tribu A lorsque X prend un
nombre non-dénombrable de valeurs.

Exemple 2.22 (Une variable aléatoire ni continue, ni discrète). On tire une boule
d’une urne qui contient 1 boule rouge et 2 boules vertes. Si la boule obtenue est verte,
alors on lance notre flèche par terre et on mesure son angle. L’univers de l’expérience est
Ω = {r} ∪ {(v, x); 0 ≤ x < 2π}. Soit X : Ω→ R donnée par

X(r) = −2, 9, X((v, x)) = x.

X prend ses valeurs dans {−2, 9} ∪ [0, 2π[ et sa fonction de répartition admet la repré-
sentation graphique suivante.

|

x0

1

1/3

-2,9 2π

y
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Représentation graphique de y = FX(x)

Exemple 2.23 (L’escalier du diable).

Remarque 2.24.

Clairement, si X prend un nombre non-dénombrable de valeurs, il est nécessaire
que Ω ne soit pas dénombrable. C’est le cas pour les variables continues. En
revenant à la Remarque 1.8, on peut se demander pourquoi dans cette situation
on ne pourrait pas prendre la tribu 2Ω de toutes les parties. C’est à l’évidence
une tribu et on peut donc considérer une probabilité P construite sur elle. Le
problème que l’on rencontre est le suivant. On peut montrer qu’il n’existe pas de
mesures de probabilités sur 2Ω autres que celles de la forme (1.15) :

∑
n≥1 pnδωn

car 2Ω est un ensemble trop gros.





CHAPITRE 3

Loi et espérance d’une variable aléatoire

Nous commençons par présenter les notions de loi et d’espérance dans la situation
la plus simple qui est celle des variables discrètes. Puis, nous étendons par analogie ces
notions au cas des variables continues. Finalement, nous montrons qu’il existe un cadre
mathématique général qui permet de comprendre et définir ces notions pour toutes les
variables aléatoires.

3.1. Variables discrètes

Soit X une variable aléatoire qui prend les valeurs {xn;n ∈ N} où les xn sont distincts
et N est un ensemble d’indices inclus dans l’ensemble {1, 2, . . .} des entiers positifs non
nuls, voir les Remarques 2.11. On décrit le comportement aléatoire de X par la donnée
de (xn, pn)n∈N avec pn := P(X = xn), n ∈ N. Cette donnée est moins informative a
priori que celle de (X,P) qui décrit le phénomène ω par ω, mais elle est suffisante pour
obtenir toutes les quantités moyennes que nous désirons.

Définition 3.1. La loi de la variable aléatoire discrète X est

(3.2) PX =
∑

n∈N
pnδxn

Une loi de cette forme est dite atomique. Ses atomes sont les xn tels que pn > 0.

On rappelle que δx est la masse de Dirac au point x, c’est-à-dire que pour toute partie

B ⊂ R, δx(B) =

{
1 si x ∈ B
0 sinon

, voir la Définition 1.12. La loi PX est une mesure de

probabilité sur R.

Exemples 3.3.

(1) La variable aléatoire X de l’Exemple 2.12-(1) a pour loi PX = 1
4
δ0 + 1

2
δ1 + 1

4
δ2.

(2) La loi de celle de l’Exemple 2.12-(2) est PX =
∑

n≥1 2−nδn.

Soit B une partie de R, nous constatons que

(3.4) P(X ∈ B) = PX(B), B ⊂ R

puisque

PX(B) =
∑

n∈N
pnδxn(B) =

∑

n∈N :xn∈B
pn

=
∑

n∈N :xn∈B
P(X = xn) = P(X ∈ B).

On voit clairement à l’aide de (2.14) que la donnée de (xn, pn)n∈N est équivalente à
celle de la fonction de répartition FX , de même qu’elle est équivalente à celle de la loi

17
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PX . En résumé, le comportement aléatoire de X est décrit de manière équivalente par la
donnée de

– (xn, pn)n∈N ou
– la fonction de répartition FX ou
– la loi PX .
La valeur moyenne de X pondérée par les probabilités de réalisation des événements

est appelée son espérance mathématique.

Définition 3.5. Soit X une variable discrète de loi PX =
∑

n∈N pnδxn . L’espérance
mathématique de X est

EX :=
∑

n∈N
pnxn.

Pour que cette quantité soit définie correctement, il est nécessaire de supposer que

E|X| :=
∑

n∈N
pn|xn| <∞

c’est-à-dire que
∑

n∈N pnxn est une série absolument convergente.

Exemples 3.6.

(1) La variableX de l’Exemple 3.3-(1) a pour loi PX = 1
4
δ0+

1
2
δ1+

1
4
δ2. Son espérance

est EX = 1
4
×0 + 1

2
×1 + 1

4
×2 = 1.

(2) La variable X de l’Exemple 3.3-(2) a pour loi PX =
∑

n≥1 2−nδn. Son espérance
est EX =

∑
n≥1 2−nn.

Remarques 3.7.

(1) Lorsque X est une variable aléatoire positive, son espérance EX =
∑

n∈N pnxn
est une série à termes positifs. Elle est donc toujours définie à condition de lui
donner la valeur +∞ lorsqu’elle est divergente.
En particulier, pour toute variable aléatoire, on a E|X| =

∑
n∈N pn|xn| et

l’on peut écrire E|X| sans précaution en tant que nombre dans [0,+∞] =
[0,+∞[∪{+∞}. De plus, E|X| < ∞ signifie que la série

∑
n∈N pnxn est ab-

solument convergente et donc que EX est bien défini.

(2) On définit la loi d’une variable aléatoire discrète X à valeurs dans un ensemble
quelconque X exactement comme lorsque X ⊂ R, par la donnée de (xn, pn)n∈N
où les xn sont dans X . La loi de X est donnée par la Définition 3.1 : PX =∑

n∈N pnδxn . C’est une mesure de probabilité sur X muni de la tribu 2X de ses
parties.

(3) En revanche, pour considérer EX, il faut pouvoir additionner les x et les mul-
tiplier par des poids 0 ≤ p ≤ 1. La notion d’espèrance de X n’a donc de sens
que si X est un espace vectoriel. L’espérance de X est donnée par la Définition
3.5 : EX =

∑
n∈N pnxn ∈ X sous réserve que cette série soit absolument conver-

gente, c’est-à-dire que la série à termes positifs E‖X‖ =
∑

n∈N pn‖xn‖ < ∞
soit convergente, où ‖ · ‖ est une norme sur l’espace vectoriel X . Un cas très
important est celui de X = Rd muni de le norme euclidienne ou de n’importe
quelle autre norme équivalente.
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Considérons la variable aléatoire Y = ϕ(X), image de X par la fonction numérique
ϕ : R→ R. Sa loi est PY =

∑
m∈M qmδymoù {ym;m ∈M} = {ϕ(xn);n ∈ N} les ym étant

tous distincts et

qm := P(Y = ym)

= P(ϕ(X) = ym)

=
∑

x∈X(Ω):ϕ(x)=ym

P(X = x)

=
∑

n∈N(m)

pn(3.8)

où N(m) = {n ∈ N : ϕ(xn) = ym} est l’ensemble des indices des xn dont l’image par ϕ
est ym.
Notons que (N(m))m∈M constitue une partition de N. C’est-à-dire que les parties N(m)
sont disjointes : m 6= m′ ⇒ N(m) ∩N(m′) = ∅ (puisque les ym sont tous distincts), et

(3.9) N =
⊔

m∈M
N(m).

Théorème 3.10. On suppose que
∑

n∈N pn|ϕ(xn)| <∞. Alors,

(3.11) E[ϕ(X)] =
∑

n∈N
pnϕ(xn).

Démonstration. En notant Y = ϕ(X) comme précédemment, nous avons

E[ϕ(X)] = EY
(a)
=

∑

m∈M
qmym

(b)
=

∑

m∈M

∑

n∈N(m)

pnym

(c)
=

∑

m∈M

∑

n∈N(m)

pnϕ(xn)

(d)
=

∑

n∈N
pnϕ(xn)

où (a) est la définition de l’espérance, (b) provient de (3.8), (c) est une conséquence de
ym = ϕ(xn), ∀n ∈ N(m) et (d) vient de (3.9).
Bien évidemment, il faut s’assurer que toutes ces séries sont absolument convergentes.
Or, en reprenant le précédent calcul en remplaçant Y par |Y | et donc ϕ par |ϕ|, on voit
que c’est le cas sous notre hypothèse :

∑
n∈N pn|ϕ(xn)| <∞. �

Théorème 3.12. La loi de ϕ(X) est Pϕ(X) =
∑

n∈N pnδϕ(xn).
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Démonstration. On reprend en la transposant la preuve du Théorème 3.10. Ce
qui donne :

Pϕ(X) = PY =
∑

m∈M
qmδym =

∑

m∈M

∑

n∈N(m)

pnδym

=
∑

m∈M

∑

n∈N(m)

pnδϕ(xn) =
∑

n∈N
pnδϕ(xn)

qui est le résultat désiré. �

Reprenons l’Exemple 3.3-(1), c’est-à-dire PX = 1
4
δ0 + 1

2
δ1 + 1

4
δ2 et considérons ϕ(x) =

(x− 1)2. On obtient alors Pϕ(X) = 1
4
δϕ(0) + 1

2
δϕ(1) + 1

4
δϕ(2) = 1

4
δ1 + 1

2
δ0 + 1

4
δ1 = 1

2
δ0 + 1

2
δ1.

En prenant N = {1, 2, 3}, x1 = 0, x2 = 1 et x3 = 2, ainsi que M = {1, 2} avec
y1 = 0 = ϕ(1) et y2 = 1 = ϕ(0) = ϕ(2), nous obtenons N(1) = {2} et N(2) = {1, 3}.
La formule (3.8) s’écrit q1 =

∑
n∈N(1) pn = p2 et q2 =

∑
n∈N(2) pn = p1 + p3, ce qui donne

P(ϕ(X) = 0) = 1/2 et P(ϕ(X) = 1) = 1/4 + 1/4 = 1/2.

Lemme 3.13 (Positivité de l’espérance).

(1) Soit X une variable positive : X ≥ 0, c’est-à-dire X(ω) ≥ 0,∀ω ∈ Ω. Alors,
0 ≤ EX ≤ ∞.

(2) Soient ϕ et ψ deux fonctions positives telles que 0 ≤ ϕ ≤ ψ. Alors, 0 ≤
E[ϕ(X)] ≤ E[ψ(X)] ≤ ∞.

Démonstration. • Preuve de (1). Nous avons xn ≥ 0 et pn ≥ 0 pour tout n ∈ N.
Donc EX =

∑
n∈N pnxn ≥ 0.

• Preuve de (2). Pour tout n ∈ N, 0 ≤ pnϕ(xn) ≤ pnψ(xn). Donc les séries à termes posi-
tifs correspondantes sont ordonnées de façon similaire : 0 ≤ E[ϕ(X)] =

∑
n∈N pnϕ(xn) ≤∑

n∈N pnψ(xn) ≤ E[ψ(X)] ≤ ∞. �

Théorème 3.14 (Linéarité de l’espérance). Soient ϕ, ψ : R → R deux fonctions
numériques telles que E|ϕ(X)| <∞ et E|ψ(X)| <∞. Pour tous réels a, b, nous avons

E[aϕ(X) + bψ(X)] = aE[ϕ(X)] + bE[ψ(X)]

où toutes les espérances sont bien définies.

Démonstration. Puisque |aϕ(X)+bψ(X)| ≤ |a||ϕ(X)|+|b||ψ(X)|, grâce au Lemme
3.13-(2), nous avons E|aϕ(X) + bψ(X)| ≤ |a|E|ϕ(X)| + |b|E|ψ(X)| < ∞ de sorte que
toutes les espérances sont bien définies. Grâce au Théorème 3.10,

E[aϕ(X) + bψ(X)] =
∑

n∈N
pn[aϕ(xn) + bψ(xn)]

= a
∑

n∈N
pnϕ(xn) + b

∑

n∈N
pnψ(xn)

= aE[ϕ(X)] + bE[ψ(X)]

ce qui achève la preuve. �

Théorème 3.15 (Croissance de l’espérance). Soient ϕ et ψ deux fonctions numé-
riques telles que E|ϕ(X)| <∞, E|ψ(X)| <∞ et ϕ ≤ ψ. Alors, E[ϕ(X)] ≤ E[ψ(X)].
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Démonstration. ψ(X)− ϕ(X) ≥ 0, donc par linéarité et positivité de l’espérance
E[ψ(X)]− E[ϕ(X)] = E[ψ(X)− ϕ(X)] ≥ 0. �

Remarque 3.16.

En reprenant la Remarque 3.7-(2), on peut étendre les Théorèmes 3.14 et 3.15 au
cas des variables aléatoires discrètes à valeurs dans un ensemble X quelconque,
en prenant des fonctions ϕ, ψ : X → R, puisque ϕ(X) et ψ(X) sont des variables
aléatoires réelles.

3.2. Variables continues

Nous allons procéder par analogie avec les variables discrètes. Nous gardons les nota-
tions introduites à la Définition 2.15, en particulier la densité fX de la loi de la variable
aléatoire continue X est supposée continue par morceaux.

Définition 3.17.

(1) On note CX l’ensemble des fonctions de ϕ : R → R qui sont continues par
morceaux et telles que l’intégrale généralisée

∫
R
|ϕ(x)|fX(x) dx soit convergente,

c’est-à-dire
∫

R
|ϕ(x)|fX(x) dx <∞.

(2) Soit ϕ ∈ CX . L’espérance mathématique de la variable aléatoire ϕ(X) est définie
par

(3.18) Eϕ(X) :=

∫

R

ϕ(x)fX(x) dx.

– Une justification rigoureuse de cette définition peut être obtenue en montrant
qu’elle est l’extension naturelle de la Définition 3.5 de l’espérance d’une variable
discrète.

– En tenant compte de (2.20), lorsqu’on se souvient de la construction de l’intégrale
de Riemann comme limite de sommes de Darboux, on voit que cette définition est
analogue au résultat obtenu en (3.11) pour les variables discrètes.

– Du fait que fX et ϕ sont continues par morceaux, il en est de même pour leur
produit ϕfX qui, par conséquent, est localement intégrable au sens de Riemann.

Remarques 3.19.

(1) Si ϕ ≥ 0 est une fonction continue par morceaux et positive, on peut définir
l’espérance (3.18) en posant Eϕ(X) = +∞ lorsque l’intégrale généralisée posi-
tive

∫
R
ϕ(x)fX(x) dx est divergente.

En particulier, pour toute fonction ϕ continue par morceaux, on note E|ϕ(X)| =∫
R
|ϕ(x)|fX(x) dx ∈ [0,∞].

(2) L’hypothèse d’intégrabilité E|ϕ(X)| =
∫

R
|ϕ(x)|fX(x) dx <∞ exprime que l’in-

tégrale généralisée
∫

R
ϕ(x)fX(x) dx est absolument convergente.

Exemple 3.20. SiX est l’angle de la flèche de l’Exemple 2.17 : fX(x) = 1[0,2π[(x)/(2π)

de sorte que E(X) =
∫ 2π

0
x
2π
dx = π.

Remarque 3.21. On peut se demander ce que signifie la valeur moyenne de l’angle
EX = π. En effet, si l’on avait choisi de coder l’angle dans [−π, π[, on aurait obtenu EX =
0 pour la même expérience. En revanche, les coordonnées cartésiennes (cosX, sinX) sur
le cercle trigonométrique sont indépendantes du choix de l’origine des angles.
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(1, 0)(0, 0)

(cosX, sinX)

angle = X

b

b

On définit E(cosX, sinX) = (E[cosX],E[sinX]) et on obtient la direction moyenne
E(cosX, sinX) = (0, 0) puisque E[cosX] = 1

2π

∫ 2π

0
cos x dx = 0 et E[sinX] = 1

2π

∫ 2π

0
sin x dx =

0. Ce qui signifie bien qu’aucune direction n’est privilégiée.

Théorème 3.22 (Linéarité de l’espérance). L’ensemble CX est un sous-espace vec-
toriel de l’espace des fonctions numériques.
Pour tous ϕ, ψ ∈ CX et tous réels a, b, nous avons

E[aϕ(X) + bψ(X)] = aE[ϕ(X)] + bE[ψ(X)].

Démonstration. Soient ϕ et ψ deux fonctions continues par morceaux. L’ensemble
des points de discontinuité de ϕ + ψ est inclus dans la réunion des ensembles de points
de discontinuité de ϕ et ψ et une réunion finie de points isolés reste un ensemble de
points isolés. Donc ϕ + ψ est continue par morceaux. Il en est de même pour aϕ pour
tout a ∈ R.
D’autre part,

∫
R
|aϕ(x)|fX(x) dx = |a|

∫
R
|ϕ(x)|fX(x) dx <∞. Ce qui prouve que CX est

un espace vectoriel.
La linéarité de l’intégrale nous assure de

E[aϕ(X) + bψ(X)] =

∫

R

[aϕ(x) + bψ(x)]fX(x) dx

= a

∫

R

ϕ(x)fX(x) dx+ b

∫

R

ψ(x)fX(x) dx

= aE[ϕ(X)] + bE[ψ(X)],

qui est le résultat annoncé. �

Théorème 3.23 (Croissance de l’espérance).

(1) Soient ϕ, ψ ≥ 0 deux fonctions positives continues par morceaux telles que 0 ≤
ϕ ≤ ψ. Alors la Remarque 3.19-(1) nous assure du sens des quantités E[ϕ(X)]
et E[ψ(X)] et nous avons 0 ≤ E[ϕ(X)] ≤ E[ψ(X)] ≤ ∞.

(2) Soient ϕ, ψ ∈ CX telles que ϕ ≤ ψ, alors E[ϕ(X)] ≤ E[ψ(X)].

Démonstration. Ces résultats sont des conséquences immmédiates des propriétés
de croissance des intégrales généralisées. �

Par analogie avec la relation (3.4), nous introduisons la
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Définition 3.24. La loi de X est la mesure de probabilité sur R

PX(dx) := fX(x) dx

qui est définie par

PX(B) := P(X ∈ B) =

∫ b

a

fX(x) dx
notation

=

∫

B

fX(x) dx

pour tout intervalle B = (a, b) ⊂ R.

3.3. Une notation commune

Nous venons de voir que les résultats de croissance (Théorèmes 3.15 et 3.23) et de
linéarité (Théorèmes 3.14 et 3.22) s’expriment de façon analogue pour les variables aléa-
toires discrètes et continues. C’est l’indice qu’il existe une théorie générale qui englobe
ces deux situations. Il s’agit de la théorie de l’intégration de Lebesgue que nous n’aborde-
rons pas dans ce cours. En revanche, nous allons introduire des notations issues de cette
théorie qui permettront de traiter simultanément ces deux types de variables aléatoires.
Les principaux résultats de cette théorie sont collectés à l’Annexe B.
On note ∫

R

ϕ(x)PX(dx) =

∫

R

ϕdPX = Eϕ(X)

(1) la quantité ∫

R

ϕdPX =
∑

n∈N
ϕ(xn)pn

lorsque X est discrète de loi PX =
∑

n∈N pnδxn ou bien

(2) la quantité ∫

R

ϕdPX =

∫

R

ϕ(x)fX(x) dx

lorsque X est continue de loi PX(dx) = fX(x) dx.

Nous avons montré aux Théorèmes 3.15, 3.23, 3.14 et 3.22 que, pour ϕ et ψ dans une
bonne classe de fonctions, les propriétés suivantes sont satisfaites.

– Linéarité. Pour tous a, b ∈ R,

(3.25) E[aϕ(X) + bψ(X)] = aEϕ(X) + bEψ(X)

ou avec notre nouvelle notation :∫

R

[aϕ+ bψ] dPX = a

∫

R

ϕdPX + b

∫

R

ψ dPX

– Croissance. Si ϕ ≤ ψ, alors

(3.26) Eϕ(X) ≤ Eψ(X)

ou avec notre nouvelle notation :∫

R

ϕdPX ≤
∫

R

ψ dPX .

– Normalisation. On note 1 la fonction constante égale à 1.

(3.27) E(1) =

∫

R

dPX = PX(R) = P(Ω) = 1.
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3.4. Fonction indicatrice d’ensemble

On introduit maintenant une fonction très pratique en calcul des probabilités.

Définition 3.28 (Fonction indicatrice). Soit V un ensemble quelconque et W ⊂ V
une partie de V. La fonction indicatrice de W est

1W (v) :=

{
1 si v ∈ W
0 sinon

, v ∈ V.

Remarques 3.29.

(1) Notons que 1W (v) = δv(W ).

(2) Pour tout B ⊂ R, 1{X∈B}(ω) = 1B(X(ω)) =

{
1 si X(ω) ∈ B
0 sinon

.

Proposition 3.30.

(1) Pour B ⊂ R, E[1{X∈B}] = E[1B(X)] = P(X ∈ B) = PX(B).

(2) Pour tout réel c, E(c1Ω) = c.

On notera souvent la variable aléatoire égale à la constante c : c1Ω = c; donc E(c) = c.
Une telle variable aléatoire est dite déterministe.

Démonstration. • Preuve de (1). Commençons par le cas où X est discrète. Grâce
au Théorème 3.10, E[1{X∈B}] = E[1B(X)] =
=
∑

n∈N pn1B(xn) =
∑

n∈N ;xn∈B pn = P(X ∈ B) = PX(B).

Lorsque X est continue, E[1{X∈B}] = E[1B(X)] =
∫

R
1B(x)fX(x) dx =

∫
B
fX(x) dx =

PX(B).

• Preuve de (2). Avec (3.27) : E(c) = cE(1) = c×1. �

3.5. Variance et écart-type

Pour mesurer la moyenne des fluctuations de X autour de sa moyenne µ := EX, on
peut prendre la moyenne de l’écart à la moyenne : X−µ. C’est-à-dire E(X−µ). Mais on
voit que E(X−µ) = EX−Eµ = µ−µ = 0. En moyenne, les écarts par défaut compensent
exactement les écarts par excès. Une idée naturelle est donc de considérer la moyenne de
l’écart absolu à la moyenne : E|X−µ|. Mais personne n’aime beaucoup travailler avec les
valeurs absolues qui demandent des découpages fastidieux. C’est la raison pour laquelle
on préfère considérer la moyenne du carré de l’écart à la moyenne : E[(X − µ)2]. Si on
change d’échelle de mesure, par exemple si X est une longueur exprimée en mètres et X ′

la même longueur exprimée en millimètres, on a X ′ = 1000X d’où E[(X ′ − E(X ′))2] =
E[(1000X−1000E(X))2] = 10002E[(X−EX)2]. Ces quantités diffèrent du facteur 10002

et s’expriment comme des longueurs au carré. Il est donc pertinent de considérer la
quantité

√
E[(X − µ)2] qui conserve les bonnes unités et les facteurs d’échelle.

Définition 3.31. On suppose que E|X| < ∞ de sorte que EX est bien défini. La
variance de X est

Var(X) := E[(X − EX)2] ∈ [0,+∞]

Son écart-type est
σ(X) :=

√
Var(X) ∈ [0,+∞].
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On remarque qu’en tant qu’espérance de la variable positive (X − µ)2, Var(X) est
un nombre positif.

Il est pratique lors de certains calculs d’utiliser les formules suivantes.

Proposition 3.32. Soit X tel que E|X| <∞. Nous avons

(1) Var(X) = E(X2)− (EX)2.

(2) Var(aX) = a2Var(X) et σ(aX) = |a|σ(X), pour tout réel a 6= 0, avec la conven-
tion a2×∞ = |a|×∞ =∞
Bien sûr, si a = 0, Var(0) = σ(0) = 0.

(3) Var(X + c) = Var(X) pour tout réel c.

(4) Var(c) = 0 pour tout réel c.

Démonstration. • Preuve de (1). Grâce à la linéarité de l’espérance (3.25) et à la
Proposition 3.30-(2), en posant µ = EX, Var(X) = E[(X − µ)2] = E[X2 − 2µX + µ2] =
E(X2)− 2µEX + E(µ2) = E(X2)− 2µ2 + µ2 = E(X2)− µ2.

• Preuve de (2). A nouveau, par la linéarité de l’espérance, Var(aX) = E[(aX − aµ)2] =
E[a2(X − µ)2] = a2E[(X − µ)2] = a2Var(X).

• Preuve de (3). Var(X + c) = E[{(X + c)− E(X + c)}2] = E[{X + c− (EX + c)}2] =
E[{X − EX}2] = Var(X).

• Preuve de (4). Var(c) = Var(c− c) = Var(0) = 0. �

3.6. Moments

Commençons par la définition des moments d’une variable aléatoire.

Définition 3.33. Soit X une variable aléatoire réelle.
– Si X ≥ 0 est une variable aléatoire positive, pour tout réel p > 0, on appelle

moment d’ordre p de X la quantité E[Xp] ∈ [0,∞].
– Dans le cas général où X est une variable aléatoire réelle, pour tout entier p ≥ 1

tel que E[|X|p] <∞, on appelle moment d’ordre p de la variable aléatoire réelle X
la quantité E(Xp).

On rappelle que les puissances non-entières ne sont définies que pour les nombres
positifs par xp := exp(p ln(x)), x > 0, p ∈ R et 0p = 0 si p > 0.

Proposition 3.34 (Comparaison des moments). On se donne deux réels 0 < p ≤ q.
Soit X ≥ 0 une variable aléatoire positive : E[Xq] <∞⇒ E[Xp] <∞.
Pour toute variable aléatoire réelle X : E[|X|q] <∞⇒ E[|X|p] <∞.

Démonstration. Soit X ≥ 0. On utilise les fonctions indicatrices 1W , voir la Défi-
nition 3.28, en remarquant que 1 = 1W + 1W c :

E[Xp] = E[(1{X<1} + 1{X≥1})X
p]

(a)
= E[1{X<1}X

p] + E[1{X≥1}X
p]

(b)

≤ 1 + E[1{X≥1}X
q]

(c)

≤ 1 + E[Xq] <∞.



26 3. LOI ET ESPÉRANCE D’UNE VARIABLE ALÉATOIRE

L’égalité (a) est une application de la linéarité de l’espérance. L’inégalité (b) vient de
1{0≤x<1}x

p ≤ 1 et xp ≤ xq lorsque x ≥ 1 et 0 < p ≤ q. On obtient l’inégalité (c) en
remarquant que 1{x≥1}x

q ≤ xq lorsque x ≥ 0. On a invoqué (3.26) pour des fonctions
positives pour ces deux inégalités.

La dernière assertion de la proposition s’en déduit immédiatement. �

Corollaire 3.35. Si E(X2) <∞, alors E|X| <∞.
De plus, Var(X) <∞ si et seulement si E(X2) <∞.

Démonstration. La première assertion est un cas particulier de la Proposition 3.34
et la seconde s’en déduit à l’aide de la Proposition 3.32-(1). �

3.7. Fonctions d’une variable aléatoire

Si ϕ est une fonction numérique suffisamment régulière etX est une variable aléatoire,
alors Y = ϕ(X) est aussi une variable aléatoire. Pour tout intervalle B ⊂ R, notons
ϕ−1(B) := {x ∈ R;ϕ(x) ∈ B}.

Exercice 3.36. Montrer que si ϕ est continue par morceaux, ϕ−1(B) est une réunion
dénombrable d’intervalles.

Grâce à l’exercice précédent et à l’identité (3.46) plus bas, on peut considérer PX(ϕ−1(B))
et écrire

PY (B) = P(Y ∈ B)

= P(ϕ(X) ∈ B)

= P(X ∈ ϕ−1(B))

= PX(ϕ−1(B))

ce qui spécifie la loi de Y. Avec B =
⊔
n≥1 In où les In sont des intervalles disjoints, nous

avons

(3.37) P(X ∈ B) =
∑

n≥1

P(X ∈ In).

(Notons que si B est la réunion finie de N intervalles, on peut toujours prendre In = ∅
pour n > N). Or cette quantité est entièrement déterminée par la fonction de répartition
FX de X comme le montre la Proposition 2.9.

Par exemple, lorsque ϕ est une application strictement monotone son application
réciproque ϕ−1 est bien définie et en prenant B =]−∞, y] nous obtenons lorsque ϕ est
strictement croissante

FY (y) = P(ϕ(X) ≤ y)

= P(X ≤ ϕ−1(y))

= FX(ϕ−1(y))

et lorsque ϕ est strictement décroissante

FY (y) = P(ϕ(X) ≤ y)

= P(X ≥ ϕ−1(y))

= 1− FX((ϕ−1(y))−)

Donnons quelques exemples d’application de cette méthode.
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(a) Soit X une variable continue de densité fX continue par morceaux. On cherche la loi
de Y = aX + b avec a et b réels.
Remarquons avant tout que lorsque a = 0, Y vaut b quoiqu’il arrive, sa loi est donc
PY = δb. On note en passant que ceci nous donne un exemple de ϕ(X) discrète alors
que X est continue.
Prenons maintenant a 6= 0 et calculons la fonction de répartition de Y = aX + b.

– Si a > 0, FY (y) = P(aX + b ≤ y) = P(X ≤ (y− b)/a) = FX((y− b)/a). Ce qui
donne fY (y) = F ′

Y (y) = fX((y − b)/a)/a.
– Si a < 0, FY (y) = P(aX + b ≤ y) = P(X ≥ (y− b)/a) = 1−FX((y− b)/a). Ce

qui donne fY (y) = F ′
Y (y) = −fX((y − b)/a)/a.

Finalement, nous obtenons dans les deux cas

(3.38) fY (y) =
fX((y − b)/a)

|a| , y ∈ R

(b) Soit X une variable aléatoire quelconque, la fonction de répartition FY de Y = X2

s’exprime en fonction de FX de la manière suivante. Pour tout y ≥ 0,

FY (y) = P(X2 ≤ y)

= P(−√y ≤ X ≤ √y)
= FX(

√
y)− FX((−√y)−)

alors que pour tout y < 0, FY (y) = 0.

En particulier, si X admet une densité fX continue par morceaux, FX est déri-
vable partout sauf en un nombre fini de points et F ′

X = fX . Par conséquent Y admet
la densité (définie partout sauf en un nombre fini de points)

(3.39) fY (y) = F ′
Y (y) = 1(y>0)

fX(
√
y) + fX(−√y)

2
√
y

.

Exemple 3.40. Si X est l’angle de la flèche de l’Exemple 2.17 et Y = X2,
fX(x) = 1[0,2π[(x)/(2π) et avec (3.39) : fY (y) = 1[0,4π2[/(4π

√
y) de sorte que

E(X2) =

∫ 2π

0

x2

2π
dx =

4

3
π2

E(Y ) =

∫ 4π2

0

√
y

4π
dy =

4

3
π2

On constate bien évidemment que E(Y ) = E(X2).

(c) Les choses sont plus simples si l’on considère Z = X3. En effet, pour tout z ∈ R,
nous avons

FZ(z) = P(X3 ≤ z) = P(X ≤ z1/3) = FX(z1/3).

La simplicité de ce calcul vient du fait que z3 est injective, alors que la non-injectivité
de z2 créait quelques difficultés dans l’exemple précédent. Si X admet une fonction
de densité continue par morceaux, Z = X3 admet la fonction de densité

fZ(z) =
fX(z1/3)

3z2/3
.

Notons que cette fonction n’est pas définie en z = 0, mais ça n’est pas un pro-
blème puisque des fonctions de densité égales sauf sur un ensemble de longueur nulle
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(Lebesgue-presque partout) correspondent à la même loi, voir la Proposition 3.43
plus bas.

3.8. Egalité en loi

Cette notion est spécifique à la théorie des probabilités.

Définition 3.41 (Egalité en loi). Deux variables aléatoires X1 et X2 construites
respectivement sur (Ω1,P1) et (Ω2,P2) sont égales en loi si et seulement si elles ont la

même loi : PX1 = PX2 . On note dans ce cas : X1
L
= X2.

Cela ne signifie pas que

(1) X1 = X2 ni même que

(2) P(X1 = X2) = 1, même lorsque (Ω1,P1) = (Ω2,P2).

Bien sûr, (1) implique (2) qui implique l’égalité en loi.
L’égalité en loi est la notion la plus faible permettant d’identifier deux phénomènes

aléatoires.

Exemples 3.42.

(1) On joue deux fois de suite à pile ou face de sorte que Ω1 = {pp, pf, fp, ff} et
P1 = 1

4
(δpp+δpf +δfp+δff ). On considère X1 défini par : X1(pp) = X1(pf) = −3

et X1(fp) = X1(ff) =
√

5.
On lance un dé de sorte que Ω2 = {a, b, c, d, e, f} avec P2 = 1

6
(δa + δb + δc +

δd + δe + δf ). On considère X2 défini par X2(a) = X2(b) = X2(c) = −3 et
X2(d) = X2(e) = X2(f) =

√
5.

On voit que PX1 = PX2 = 1
2
(δ−3 + δ√5), c’est-à-dire X1

L
= X2.

(2) Soit X la variable de l’Exemple 2.6 dont la loi est 1
4
δ0 + 1

2
δ1 + 1

4
δ2. Montrer que

X
L
= 2−X.

(3) Soit X une variable aléatoire continue dont la densité est une fonction paire ;

fX(−x) = fX(x),∀x. Alors nous avons X
L
= −X. En effet, pour tout réel y nous

avons

F−X(y) = P(X ≥ −y)

=

∫ +∞

−y
fX(x) dx

(a)
=

∫ y

−∞
fX(−z) dz

(b)
=

∫ y

−∞
fX(z) dz

= FX(y)

où l’égalité (a) s’obtient avec le changement de variable z = −x et (b) est une
conséquence de la parité de fX .

Nous avons déjà remarqué que les données de FX et PX sont équivalentes. On en
déduit le résultat suivant.
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Proposition 3.43. Deux variables aléatoires X1 et X2 construites respectivement
sur (Ω1,P1) et (Ω2,P2) sont égales en loi si et seulement si elles ont la même fonction
de répartition :

FX1 = FX2 .

Si elles sont discrètes, cela signifie qu’il existe une suite (éventuellement finie) (xn)n∈N
de réels distincts telle que

∑
n∈N P1(X1 = xn) = 1 et

P1(X1 = xn) = P2(X2 = xn), ∀n ∈ N
Si elles sont continues, cela signifie que leurs densités ont le même ensemble de points

de discontinuité (Cf. les Définitions 2.15 et 3.17) et qu’elles sont égales partout sauf
éventuellement sur cet ensemble de "longueur nulle". On dit alors qu’elles sont égales
Lebesgue-presque partout et on note

fX1 = fX2 , Lebesgue-p.p.

3.9. Définition abstraite de la loi d’une variable aléatoire

Spécifier complètement le comportement d’une variable aléatoire X devrait permettre
en principe d’évaluer les quantités P(X ∈ B) pour toute partie B de R. Mais cela n’est
possible que si l’ensemble {X ∈ B} est un événement, c’est-à-dire un élément de la tribu
A.

Lorsque X est une variable discrète, on peut prendre Ω dénombrable et A = 2Ω de
sorte que pour tout B ⊂ R, {X ∈ B} est un événement.

Lorsque X est une variable aléatoire continue, comme nous l’avons déjà évoqué à la
Remarque 2.24, les choses se compliquent du point de vue mathématique : on ne peut
pas prendre n’importe quelle partie B. Les "bonnes" parties B de R sont celles de la
tribu de Borel.

Définition 3.44. La tribu de Borel de R est la plus petite tribu contenant l’ensemble
I de tous les intervalles de R. On la notera B.

Exercice 3.45. Montrer que si (Aγ, γ ∈ Γ) est une collection quelconque de tribus
sur le même ensemble Ω, alors l’ensemble

⋂
γ∈ΓAγ constitué des parties de Ω qui se

trouvent dans toutes les tribus Aγ lorsque γ parcourt l’ensemble d’indices Γ, est aussi
une tribu.

La plus petite tribu contenant l’ensemble I de tous les intervalles de R est par dé-
finition l’intersection de toutes les tribus contenant I. Cette intersection existe puisque
2R est une tribu qui contient I, de plus en tant qu’intersection de tribus, c’est une tribu
d’après l’exercice précédent. Ceci justifie la définition de la tribu de Borel B.

On peut montrer, mais ça n’est pas simple, qu’il existe des parties de R qui ne sont
pas dans B.

On retiendra que la tribu de Borel contient toutes les réunions dénombrables d’in-
tervalles.

Avec B =
⊔
n≥1 In où les In sont des intervalles disjoints, nous avons

(3.46) P(X ∈ B) =
∑

n≥1

P(X ∈ In).
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(Notons que si B est la réunion finie de N intervalles, on peut toujours prendre In = ∅
pour n > N). Or cette quantité est entièrement déterminée par la fonction de répartition
FX de X comme le montre la Proposition 2.9.

Définition 3.47. La loi de la variable aléatoire (quelconque) X est la mesure de
probabilité PX sur (R,B) définie par

PX(B) = P(X ∈ B), B ∈ B.
La connaissance de PX sur tous les intervalles de la forme ]a, b] permet de retrouver

FX(x) = P(X ∈]−∞, x]) = limn→∞ PX(]− n, x]), x ∈ R.
Réciproquement, si on se donne FX , grâce à la Proposition 2.9, PX est connue sur tous les
intervalles et par suite, grâce à (3.46), sur toutes les réunions dénombrables d’intervalles.
On peut montrer, mais c’est assez délicat et dépasse le niveau de ce cours, qu’en fait FX
spécifie PX complètement sur B.

En résumé, FX et PX encodent la même information sur le comportement aléatoire
de X.

De plus, PX n’est autre que l’image sur (R,B) de la mesure de probabilité P sur
(Ω,A) par l’application X :

PX = X#P.

La notion de mesure image est présentée à l’Annexe ??.



CHAPITRE 4

Variables aléatoires usuelles

Nous présentons ici les lois des variables aléatoires les plus usitées. Certaines, comme
la loi normale, sont extrêmement importantes tant sur le plan théorique que pratique
(utilisation très fréquente en statistique).

4.1. Exemples de variables aléatoires discrètes

Nous présentons dans cette section les lois de Bernoulli, binomiales, de Poisson et
géométriques.

Loi de Bernoulli. Il s’agit d’une des lois les plus simples. La variable aléatoire X
suit la loi de Bernoulli B(p) de paramètre 0 ≤ p ≤ 1 si sa loi est

PX = qδ0 + pδ1.

Ceci signifie que X peut prendre les valeurs 0 et 1 avec les probabilités respectives
q = 1−p et p. On obtient immédiatement que EX = q0+p1 = p et que puisque X2 = X
sous cette loi, E(X2) = p. Par conséquent, VarX = p− p2 = pq.

Une variante immédiate de cette loi est PY = qδa + pδb avec a, b réels. On a immé-
diatement EY = qa + pb et du fait que Y = a + (b − a)X avec X ∼ B(p), VarY =
(b− a)2VarX = (b− a)2pq, grâce à la Proposition 3.32.

Loi binomiale. La variable aléatoire X suit la loi binomiale B(n, p) de paramètres
n ≥ 1 et 0 ≤ p ≤ 1 si sa loi est

PX =
n∑

k=0

(
n
k

)
pkqn−kδk

où comme précédemment on pose q = 1− p. Ceci signifie que X peut prendre les valeurs

0, 1, . . . , n avec P(X = k) =

(
n
k

)
pkqn−k pour 0 ≤ k ≤ n. On constate qu’avec n = 1, on

retrouve B(1, p) = B(p).

Exercice 4.1.

(a) Vérifier que PX est une mesure de probabilité.

(b) Montrer que EX = np et VarX = npq.
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Solution. Nous donnons seulement la solution de EX = np. Nous avons

EX =
n∑

k=0

k
n!

k!(n− k)!p
kqn−k

= np

n∑

k=0

(n− 1)!

(k − 1)!(n− k)!p
k−1qn−k

(a)
= np

n∑

l=0

(
n− 1
l

)
plqn−1−l

(b)
= np(p+ q)n−1

= np

où l’on a effectué le changement de variable l = k−1 en (a) (on notera que n−k = n−1−l)
et utilisé la formule du binôme de Newton en (b).
Une indication pour calculer VarX : commencer par calculer E[X(X − 1)] en procédant
dans le même esprit que ce que nous venons de faire. �

Loi géométrique. La variable aléatoire X suit la loi géométrique G(p) de paramètre
0 < p ≤ 1 si sa loi est

PX =
∞∑

k=1

qk−1pδk

où comme précédemment on pose q = 1− p. Ceci signifie que X peut prendre les valeurs
1, 2, . . . avec P(X = k) = qk−1p pour k ≥ 1.

Exercice 4.2.

(a) Vérifier que PX est une mesure de probabilité.

(b) Montrer que EX = 1/p.

Solution. On pose ϕ(q) =
∑∞

k=0 q
k, 0 ≤ q < 1. On sait que

ϕ(q) = limn→∞
∑n

k=0 q
k = limn→∞(1− qn+1)/(1− q) = 1/(1− q).

De ce fait, PX(N) = p
∑∞

k=1 q
k−1 = p

∑∞
k=0 q

k = p/(1− q) = 1, ce qui montre (a).
Grâce au Théoréme de dérivation sous le signe somme B.3, en dérivant terme à terme la
série

∑∞
k=0 q

k on obtient
∑∞

k=1 kq
k−1 = ϕ′(q) et puisque ϕ′(q) = d

dq
(1/(1−q)) = 1/(1−q)2,

on voit que EX =
∑∞

k=1 kq
k−1p = p/(1− q)2 = 1/p. �

Loi de Poisson. La variable aléatoire X suit la loi de Poisson P(λ) de paramètre
λ > 0 si sa loi est

PX =
∞∑

k=0

e−λ
λk

k!
δk.

Ceci signifie que X peut prendre les valeurs 0, 1, 2, . . . avec P(X = k) = e−λλk/k! pour
k ≥ 0 avec la conventions habituelles λ0 = 1 et 0! = 1 de sorte que P(X = 0) = e−λ.

Exercice 4.3.

(a) Vérifier que PX est une mesure de probabilité.

(b) Montrer que EX = VarX = λ.
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Solution. Commençons par rappeler que pour tout réel x

(4.4) ex =
∑

l≥0

xl

l

On en déduit immédiatement que PX(N) = e−λ
∑

k≥0 λ
k/k! = e−λeλ = 1.

Montrons que EX = λ. Nous avons

EX =
∑

k≥0

ke−λ
λk

k!
=
∑

k≥1

ke−λ
λk

k!

= λe−λ
∑

k≥1

λk−1

(k − 1)!

= λe−λ
∑

l≥0

λl

l!
= λe−λeλ = λ

où l’on a effectué le changement de variable l = k − 1 et utilisé la formule (4.4).
Calculons de façon similaire

E[X(X − 1)] =
∑

k≥0

k(k − 1)e−λ
λk

k!
=
∑

k≥2

k(k − 1)e−λ
λk

k!

= λ2e−λ
∑

k≥2

λk−2

(k − 2)!

= λ2e−λ
∑

l≥0

λl

l!
= λ2e−λeλ = λ2

On en déduit que VarX = E[X(X − 1)] + EX − (EX)2 = λ2 + λ− λ2 = λ. �

Exercice 4.5. En vous inpirant de la solution précédente, montrer que pour tout
entier k ≥ 1, E[X(X − 1) · · · (X − k + 1)] = λk.

4.2. Exemples de variables aléatoires continues

Nous présentons dans cette section les lois uniformes, exponentielles, normales, Gamma
et de Cauchy.

Loi uniforme. Nous avons déjà rencontré la variable U de loi uniforme sur [0, 1].
Ses fonctions de répartition et de densité sont

FU(u) =





0 si u ≤ 0
u si 0 ≤ u ≤ 1
1 si u ≥ 1

et fU(u) = 1(0≤u≤1), u ∈ R.
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| |

u u

z z

0 0

1
1

1 1
z = FU(u) z = fU(u)

Une variable aléatoire X suit une loi uniforme sur [a, b] si elle a la même loi (c’est-à-dire
la même fonction de répartition) que a + (b − a)U. Ses fonctions de répartition et de
densité (voir (3.38)) sont

F (x) =





0 si x ≤ a
(x− a)/(b− a) si a ≤ x ≤ b
1 si x ≥ b

et f(x) =
1(a≤x≤b)
b− a , x ∈ R.

| |

x x

z z

a a

1
1/(b− a)

b b
z = F (x)

z = f(x)
0 0

||

On note U(a, b) la loi uniforme sur [a, b]. Nous avons donc

(4.6) a+ (b− a)U ∼ U(a, b)

lorsque U ∼ U(0, 1).

Exercice 4.7. Vérifier que E(X) = (a+ b)/2 et que Var(X) = (b− a)2/12.

Loi exponentielle. Une variable aléatoire X suit la loi exponentielle de paramètre
λ, notée E(λ), si ses fonction de répartition et fonction de densité sont

F (x) =

{
0 si x ≤ 0
1− e−λx si x ≥ 0

et f(x) = 1(x≥0)λe
−λx, x ∈ R.

xx

z z

0 0

1

λ |

z = F (x) z = f(x)

Exercice 4.8. Vérifier que E(X) = 1/λ et que Var(X) = 1/λ2.
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Cette variable aléatoire sert souvent à modéliser des temps d’attente. Elle intervient
de façon fondamentale dans la construction des processus de Markov à temps continu que
l’on rencontre lors de la modélisation de système de files d’attente (réseaux informatiques,
guichets, etc. . .).

Loi normale. C’est probablement la loi continue la plus importante. On l’appelle
aussi loi de Gauss ou loi gaussienne. On dit qu’une variable aléatoire Z suit une loi

normale centrée réduite si sa fonction de densité est

fZ(z) =
1√
2π

exp

(
−z

2

2

)
, z ∈ R

Cette loi est notée N (0, 1).

z

v

0

1/
√

2π

||

1−1

|

||

2−2

1

b bb | |

Représentation graphique de v = fZ(z)

Il n’existe pas d’expression analytique de la fonction de répartition de Z. On la note
traditionnellement

(4.9) Φ(y) = P(Z ≤ y) =

∫ y

−∞

1√
2π

exp

(
−z

2

2

)
dz.

Toutefois, on peut vérifier que limy→+∞ Φ(y) =
∫

R
fZ(z) dz = 1. Pour cela posons

I =
∫

R
fZ(z) dz. Nous avons par un simple jeu d’écriture sur les variables d’intégration

I2 =

∫

R

fZ(x) dx

∫

R

fZ(y) dy =

∫∫

R2

fZ(x)fZ(y) dxdy

=
1

2π

∫∫

R2

e−x
2/2e−y

2/2 dxdy =
1

2π

∫∫

R2

e−(x2+y2)/2 dxdy

(a)
=

1

2π

∫ 2π

0

∫ ∞

0

e−r
2/2 rdrdθ =

1

2π

(∫ 2π

0

dθ

)(∫ ∞

0

e−r
2/2 rdr

)

(b)
=

∫ ∞

0

e−u du

= 1
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où nous avons effectué
– en (a) : le changement de variables en coordonnées polaires : x = r cos θ, y = r sin θ

avec r ≥ 0 et 0 ≤ θ < 2π de sorte que r2 = x2 + y2 et dxdy est remplacé par rdrdθ;
– en (b) : le changement de variable u = r2/2.

Puisque I > 0 et I2 = 1, nous venons de montrer que

(4.10)
1√
2π

∫

R

e−z
2/2 dz =

∫

R

fZ(z) dz = 1.

Exercice 4.11. Vérifier que E(Z) = 0 et que Var(Z) = 1.

Solution. L’intégrale EZ =
∫

R
zfZ(z) dz est nulle car la fonction z 7→ zfZ(z) est

impaire et intégrable. Donc EZ = 0 et VarZ = EZ2 = 1√
2π

∫
R
z2e−z

2/2 dz. On effectue une

intégration par parties
∫
uv′ = [uv]−

∫
u′v avec u′(z) = ze−z

2/2 et v(z) = z. Nous avons
u(z) = −e−z2/2 et v′(z) = 1, de sorte que

∫
R
z2e−z

2/2 dz = [−ze−z2/2]+∞
−∞ +

∫
R
e−z

2/2 dz =

0 +
√

2π
∫

R
fZ(z) dz. On en déduit avec (4.10) que EZ2 = 1. �

Exercice 4.12. Montrer que −Z L
= Z.

Solution. Pour tout réel y, F−Z(y) = P(−Z ≤ y) = P(Z ≥ −y) =
∫∞
−y fZ(z) dz =∫∞

−y fZ(−z) dz = −
∫ −∞
y

fZ(x) dx =
∫ y
−∞ fZ(x) dx = FZ(y) où nous avons utilisé succes-

sivement la parité de fZ : fZ(z) = fZ(−z) et le changement de variable x = −z. Par
conséquent Z et −Z ont la même fonction de répartition. �

Définition 4.13. De manière générale, une variable aléatoire X est dite centrée si
E(X) = 0 et réduite si Var(X) = 1.

Une variable aléatoire X suit une loi normale de paramètres µ et σ2 (µ ∈ R, σ > 0)
notée N (µ, σ2), si elle peut s’écrire sous la forme

(4.14) X = µ+ σZ

où Z suit une loi N (0, 1). Cette loi est notée N (µ, σ2).

Exercice 4.15. Vérifier que E(X) = µ et que Var(X) = σ2.

La fonction de répartition de X est

F (x) = P(X ≤ x) = P(µ+ σZ ≤ x) = P(Z ≤ (x− µ)/σ)

= Φ((x− µ)/σ),

de sorte qu’avec f(x) = F ′(x), nous obtenons l’expression de la fonction de densité de
X suivante :

(4.16) f(x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
, x ∈ R.

La figure suivante donne la représentation graphique des densités de probabilité des lois
N (µ, σ2

1) et N (µ, σ2
2) avec 0 < σ1 < σ2. On constate que ces densités sont symétriques

par rapport à la moyenne µ et que les aires situées entre les courbes et l’axe des x sont
les mêmes pour les deux densités. De plus, la densité de N (µ, σ2

1) est plus concentrée
autour de la moyenne µ que celle de N (µ, σ2

2).
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xµ
|

µ+ σ1

|

σ1

σ2

|

µ+ σ2

N (µ, σ2
1)

N (µ, σ2
2)

L’exercice suivant permet de donner une approximation de la fonction de répartition
Φ définie en (4.9) bien qu’on n’en connaisse pas d’expression analytique exacte.

Exercice 4.17. Pour tout y > 0, nous avons

(a) P(Z ≥ y) = 1− Φ(y) ≤ e−y2/2

y
√

2π
et

(b) P(|Z| ≥ y) ≤ 2e−y2/2

y
√

2π
.

Solution. En remarquant que z/y ≥ 1 pour tout z ≥ y, nous avons

P(Z ≤ y) =

∫ ∞

y

1√
2π
e−z

2/2 dz

≤
∫ ∞

y

1√
2π

z

y
e−z

2/2 dz =
1

y
√

2π

∫ ∞

y

ze−z
2/2 dz

=
1

y
√

2π
[−e−z2/2]∞y =

e−y
2/2

y
√

2π

ce qui prouve (a). On en déduit (b) en remarquant que P(|Z| ≥ y) = P(Z ≤ −y)+P(Z ≥
y) = P(−Z ≥ y)+P(Z ≥ y) = 2P(Z ≥ y) puisque−Z a la même loi que Z, voir l’Exercice
4.12. �

Notons que les majorations de l’exercice précédent sont très mauvaises pour y proche
de 0, puisqu’elles sont en 1/y au voisinage zéro. En revanche ces estimées s’améliorent
beaucoup pour des grandes valeurs de y. On trouve P(|Z| ≥ 3) ≤ 0, 0533 ainsi que
P(|Z| ≥ 4) ≤ 0, 0021, P(|Z| ≥ 5) ≤ 3 ·10−5 et P(|Z| ≥ 6) ≤ 2 ·10−7. En pratique,
c’est-à-dire plus de 997 fois sur 1000, Z prend ses valeurs entre -4 et 4.





CHAPITRE 5

Fonctions génératrices et caractéristiques

Nous allons présenter des méthodes efficaces pour calculer les moments de certaines
lois, ainsi que les lois de sommes de variables indépendantes. Nous commençons par étu-
dier les variables aléatoires à valeurs entières, puis les variables générales.
Rappelons que le moment d’ordre k de la variable aléatoire X est E(Xk), voir la Défi-
nition 3.33. Les principaux résultats abstraits concernant les moments sont présentés en
Chapitre 13.
Dans ce qui suit on notera f (k) la dérivée d’ordre k de la fonction f.

5.1. Le cas des variables entières

On dit qu’une variable aléatoire X est entière si elle prend ses valeurs dans l’ensemble
N des nombres entiers. sa loi est donc de la forme PX =

∑
n≥0 pnδn. C’est le cas des

variables binomiales, géométriques et de Poisson.

Définition 5.1. Soit X une variable entière. Sa fonction génératrice est définie pour
tous 0 ≤ t ≤ 1 par GX(t) = E(tX).

On remarque que puisque 0 ≤ t ≤ 1 et X est entier, nous avons 0 ≤ tX ≤ 1 de sorte
que 0 ≤ E(tX) ≤ 1 est bien défini. En notant pn = P(X = n), n ∈ N, nous obtenons bien
sûr

(5.2) GX(t) =
∑

n≥0

pnt
n = p0 +

∑

n≥1

pnt
n, 0 ≤ t ≤ 1

avec GX(1) = E(1) = 1 et GX(0) = p0. Cette dernière égalité est une convention puisque
GX(0) = p00

0 : nous avons choisi de prendre 00 = 1. Cette convention est justifiée du
fait qu’elle garantit la continuité de GX(t) en t = 0. En effet, grâce au Théorème B.2,
puisque 0 ≤ tX ≤ 1 est borné, limt↓0GX(t) = p0 + limt↓0

∑
n=1 pnt

n = p0 +
∑

n=1 0 = p0.

Proposition 5.3. Pour tout entier k ≥ 1 tel que E(Xk) <∞, nous avons

E[X(X − 1) · · · (X − k + 1)] = G
(k)
X (1)

où G
(k)
X (1) est la dérivée à gauche d’ordre k de GX en 1.

On remarque que puisque X ne prend que des valeurs entières, X(X − 1) · · · (X −
k + 1) = 0 si X ∈ {0, . . . , k − 1} de sorte que X(X − 1) · · · (X − k + 1) ≥ 0.
On appelle E[X(X − 1) · · · (X − k + 1)] le k-ième moment factoriel de X.

Démonstration. Du fait que E(Xk) <∞, nous avons aussi grâce à la Proposition
3.34 : E(X l) < ∞ pour tous 1 ≤ l ≤ k. Ce qui implique clairement que E[X(X −
1) · · · (X − l + 1)] <∞ pour tous 1 ≤ l ≤ k.
Commençons par le cas k = 1 sous l’hypothèse EX < ∞. On peut donc appliquer
le théorème de dérivation sous le signe somme énoncé au Théorème B.3 pour obtenir
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G′
X(1) =

∑
n≥1 pnnt

n−1
|t=1 =

∑
n≥1 pnn puisque EX =

∑
n≥1 pnn < ∞. En recommen-

çant, on montre de même que G′′
X(1) =

∑
n≥2 pnn(n−1)tn−2

|t=1 =
∑

n≥2 pnn(n−1) sous
l’hypothèse

∑
n≥2 pnn(n− 1) = E[X(X − 1)] <∞. En dérivant k fois, nous obtenons

G
(k)
X (1) =

∑

n≥k
pnn(n− 1) · · · (n− k + 1) = E[X(X − 1) · · · (X − l + 1)]

sous l’hypothèse E[X(X − 1) · · · (X − l + 1)] <∞. �

Exemples 5.4.

(a) La loi de Bernoulli B(p) de paramètre 0 ≤ p ≤ 1 est PX = qδ0 + pδ1 où q = 1 − p.
Par conséquent, pour tout 0 ≤ t ≤ 1, GX(t) = qt0 + pt1 = q + pt. On a bien sûr,
GX(0) = q, GX(1) = q + p = 1 et EX = G′

X(1) = p.

(b) La loi binomiale B(n, p) de paramètres n ≥ 1 et 0 ≤ p ≤ 1 est
∑n

k=0

(
n
k

)
pkqn−kδk

de sorte que GX(t) =
∑n

k=0 p
kqn−ktk =

∑n
k=0(pt)

kqn−k = (q + pt)n en utilisant la
formule du binôme de Newton. Avec n = 1, on retrouve la formule précédente pour
B(p).
On obtient EX = G′

X(1) = np(q + pt)n−1
t=1 = np(q + p) = np ainsi que E[X(X −

1)] = G′′
X(1) = n(n − 1)p2(q + pt)n−2

t=1 = n(n − 1)p2. On en déduit que Var(X) =
E[X(X − 1)] + EX − (EX)2 = n(n− 1)p2 + np− (np)2 = npq.

(c) La loi de Poisson P(λ) de paramètre λ > 0 est
∑

n≥0 e
−λλn/n! δn de sorte que

GX(t) = e−λ
∑

n≥0 λ
n/n! tn = e−λ

∑
n≥0(λt)

n/n! = e−λeλt = eλ(t−1). On a EX =

G′
X(1) = λeλ(t−1)

|t=1 = λ, ainsi que E[X(X − 1)] = G′′
X(1) = λ2eλ(t−1)

|t=1 = λ2. On
en déduit que Var(X) = E[X(X − 1)] + EX − (EX)2 = λ2 + λ− λ2 = λ.

(d) La loi géométrique G(p) est
∑

n≥1 q
n−1pδn. Par conséquent GX(t) =

∑
n≥1 q

n−1ptn =

pt
∑

n≥1(qt)
n−1 = pt

∑
n≥0(qt)

n = pt/(1 − qt). On obtient donc EX = G′
X(1) =

[p(1− qt) + pqt]/(1− qt)2
|t=1 = 1/p.

Comme le montre le résultat suivant, la fonction génératrice permet de retrouver la
loi de X.

Proposition 5.5. Soit X une variable aléatoire entière de fonction génératrice GX .
Nous avons

pn = G
(n)
X (0)/n!, n ≥ 0

où G
(n)
X (0) est la dérivée n-ième à droite de GX en 0.

Démonstration. La preuve est analogue à celle de la Proposition 5.3. En dérivant n
fois terme à terme la série (5.2), on obtient G(n)

X (t) =
∑∞

k=n pkk(k−1) · · · (k−n+1)tk−n =

pnn! +
∑∞

k=n+1 pkk(k − 1) · · · (k − n+ 1)tk−n et en t = 0 : G
(n)
X (0) = pnn! + 0. �

De ce fait GX caractérise la loi de la variable entière X.
Un développement illimité formel en t = 0 de GX donne GX(t) =

∑
n≥0G

(n)
X (0)/n! tn

(un tel développement s’appelle un développement en série entière). La proposition pré-
cédente exprime que l’on peut identifier terme à terme cette série formelle avec la série
(5.2) : GX(t) =

∑
n≥0 pnt

n.
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5.2. Fonctions caractéristiques

On considère maintenant une variable X générale. On cherche une fonction analogue
à GX qui permette de calculer aisément à l’aide de dérivations successives les moments
de X. La généralisation naturelle de la fonction X 7→ tX lorsque X peut prendre des
valeurs non-entières s’obtient en posant t = es ce qui nous donne X 7→ esX . De sorte que
la généralisation de GX(t) = EtX est LX(s) = EesX .

Définitions 5.6.

(1) La transformée de Laplace de la loi de X est définie par

s ∈ R 7→ LX(s) = EesX ∈ [0,∞]

(2) La transformée de Fourier de la loi de X est définie par

s ∈ R 7→ φX(s) = EeisX ∈ C

où i est le nombre imaginaire tel que i2 = −1. On appelle aussi φX la fonction
caractéristique de la loi de X.

Remarques 5.7.

(1) Puisque esX ≥ 0, son espérance LX(s) = EesX est toujours définie dans [0,∞]
(en incluant la valeur +∞).

(2) De même, eisX = cos(sX) + i sin(sX) est une variable bornée et son espérance
φX(s) = EeisX = E[cos(sX)] + iE[sin(sX)] est un nombre complexe bien défini
puisque ses parties réelle et imaginaire sont intégrables puisque bornées.

(3) En particulier, la fonction caractéristique φX(s) est définie pour tout réel s alors
qu’on peut avoir LX(s) = +∞ pour tout s non nul comme par exemple lorsque
X suit une loi de Cauchy, voir (??).

(4) Lorsque X est une variable entière, nous avons LX(s) = GX(es) et φX(s) =
GX(eis), s ∈ R.

Théorème 5.8.

(1) On suppose qu’il existe so > 0 tel que Eeso|X| < ∞. Alors, pour tout k ≥ 1,
E|X|k <∞ et

E(Xk) = L
(k)
X (0).

(2) Sous les mêmes hypothèses qu’en (1), nous avons

(lnLX)′(0) = EX et (lnLX)′′(0) = VarX.

(3) Si E|X|k <∞ alors φX est k fois différentiable et

EXk = (−i)kφ(k)
X (0).

La première assertion du théorème montre que l’hypothèse Eeso|X| <∞ faite en (1) et
(2) est bien plus restrictive que celle faite en (3). Ceci justifie l’usage de la fonction carac-
téristique plutôt que celui de la transformée de Laplace dans certaines situations. Notons
que les calculs sont essentiellement les mêmes avec LX et φX du fait que formellement
φX(s) = LX(is).
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Démonstration. C’est une application directe du Théorème B.3 de dérivation sous
le signe somme.

• Preuve de (1). Pour tout k, il existe c > 0 tel que |x|k ≤ c + eso|x|,∀x ∈ R. Par
conséquent, E|X|k ≤ c+ Eeso|X| <∞.

La dérivée k-ième de s 7→ esX estXkesX .Or nous avons |XkesX | = |X|kesX ≤ c+eso|X|

dès que |s| ≤ s1 avec 0 < s1 < so pour une certaine constante c. Sous notre hypothèse,
nous avons E|XkesX | ≤ c + Eeso|X| < ∞ pour tout s tel que |s| ≤ s1, ce qui permet
d’appliquer le Théorème B.3 de dérivation en s = 0 (avec Y = c + eso|X|). Ceci nous
donne L(k)

X (0) = E(Xke0.X) = EXk qui est le résultat annoncé.

• Preuve de (2). Nous avons (lnLX)′ = L′
X/LX et (lnLX)′′ = L′′

X/LX − L′2
X/L

2
X . En

particulier en 0, nous obtenons grâce à (1), (lnLX)′(0) = L′
X(0)/LX(0) = EX puisque

LX(0) = 1 et (lnLX)′′(0) = L′′
X(0)/LX(0)− L′2

X(0)/L2
X(0) = EX2 − (EX)2 = VarX.

• Preuve de (3). Elle est analogue à celle de la seconde partie de (1). La dérivée k-ième
de s 7→ eisX est ikXkeisX . Or nous avons |ikXkeisX | = |X|k pour tout s et nous faisons
l’hypothèse que E|X|k < ∞. À l’aide du Théorème B.3 de dérivation en s = 0 nous
obtenons φ(k)

X (0) = E(ikXke0.X) = ikEXk qui est le résultat annoncé. �

Remarque 5.9. Le développement formel en série entière de LX : LX(s) =
∑

k≥0 L
(k)
X (0)sk/k!,

peut nous permettre d’identifier rapidement les dérivées L(k)
X (0) lorsqu’on en connaît l’ex-

pression LX(s) =
∑

k≥0 aks
k. Nous avons alors L(k)

X (0) = k!ak, k ≥ 0.
Un raisonnement analogue fonctionne lorsqu’on ne connaît qu’un développement limité
en 0 à l’ordre K : LX(s) =

∑K
k=0 aks

k + skǫ(s), pour identifier les K premières dérivées
en 0 de LX .

Exemples 5.10.

(a) Loi de Poisson P(λ). En reprenant l’Exemple 5.4-(c), avec la Remarque 5.7-(4) nous
obtenons LX(s) = exp(λ(es−1)) donc lnLX(s) = λ(es−1) de sorte que (lnLX)′(s) =
(lnLX)′′(s) = λes. Avec le Théorème 5.8-(2) on retrouve EX = VarX = λ.

(b) Loi géométrique G(p). En reprenant l’Exemple 5.4-(d), avec la Remarque 5.7-(4) nous
obtenons LX(s) = pes/(1− qes) donc lnLX(s) = ln p + s− ln(1− qes) de sorte que
(lnLX)′(s) = 1 + qes/(1 − qes) et (lnLX)′′(s) = qes(1−qes)+q2e2s

(1−qes)2
. Avec le Théorème

5.8-(2) on retrouve EX = 1/p et on obtient VarX = (qp+ q2)/p2 = (1− p)/p2.

(c) Loi exponentielle E(λ). Puisque fX(x) = 1{x≥0}λe
−λx, nous avons LX(s) = λ

∫∞
0
esxe−λx dx =

λ
∫∞
0
e−(λ−s)x dx. Cette intégrale est convergente si et seulement si s < λ et dans ce

cas LX(s) = λ/(λ−s). Nous sommes bien dans les conditions d’application du Théo-
rème 5.8-(1). Lorsque |s|/λ < 1, nous avons LX(s) = 1/(1 − s/λ) =

∑
k≥0(s/λ)k =

∑
k≥0

sk

k!
k!
λk . En tenant compte de la Remarque 5.9, nous obtenons L(k)

X (0) = k!/λk,

donc EXk = k!/λk.

Compte tenu de l’importance des variables aléatoires normales nous isolons le calcul
de leurs transformées de Laplace et fonctions caractéristiques.

Proposition 5.11.

(1) Soit Z une variable aléatoire normale standard : Z ∼ N (0, 1). Nous avons pour

tout réel s, LZ(s) = es
2/2 et φZ(s) = e−s

2/2.
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(2) Soit X une variable aléatoire normale de loi N (µ, σ2). Nous avons pour tout réel

s, LX(s) = eµs+σ
2s2/2 et φX(s) = eiµs−σ

2s2/2.

Démonstration. • Preuve de (1). Nous ne donnons que la preuve concernant LZ
en admettant que le lien formel φX(s) = LX(is) est rigoureux dans ce cas. Cette identité
nécessite la notion de prolongement analytique (prolongement de R à C) qui n’est pas
du niveau de ce cours.
Pour tout réel s,

LZ(s) =

∫

R

1√
2π
esze−z

2/2 dz

=

∫

R

1√
2π
esz−z

2/2 dz

=

∫

R

1√
2π
e−

1
2
(z2−2sz+s2)es

2/2 dz

= es
2/2

∫

R

1√
2π
e−

1
2
(z−s)2 dz

= es
2/2

où la dernière égalité provient de
∫

R

1√
2π
e−

1
2
(z−s)2 dz = 1, la condition de normalisation

de la densité N (s, 1), voir (4.16).
En admettant φZ(s) = LZ(is), on voit que φZ(s) = e−s

2/2.

• Preuve de (2). Grâce à (4.14) nous avons X = µ+σZ de sorte que LX(s) = Ees(µ+σZ) =
esµLZ(σs) et φX(s) = Eeis(µ+σZ) = eisµφZ(σs). �





CHAPITRE 6

Couples aléatoires

Beaucoup d’énoncés probabilistes intéressants s’expriment à l’aide d’une paire de
variables aléatoires X,Y. Nous allons étudier le problème de leur variation conjointe sur
le même domaine Ω. Dans tout ce qui va suivre, les variables aléatoires sont définies sur
le même espace probabilisé (Ω,A,P).

6.1. Lois jointe et marginales

La loi du couple (X,Y ) est la mesure de probabilité PX,Y sur R2 qui est spécifiée par

PX,Y (A×B) = P(X ∈ A et Y ∈ B)

pour tous intervalles A et B. On appelle lois marginales du couple (X,Y ) les lois PX et
PY de X et de Y. Nous avons pour tous intervalles A et B,

PX(A) = PX,Y (A× R)

PY (B) = PX,Y (R×B)

Pour distinguer la loi PX,Y des lois marginales, on l’appelle parfois la loi jointe de (X,Y ).

Exemple 6.1. Soit un couple aléatoire (X,Y ) qui prend les valeurs (1, 3), (1, 4) et
(2, 4) avec les probabilités respectives 1/4, 1/8 et 5/8.

b b

b

1 2

3
4

x

y

0

(1/4)

(1/8) (5/8)

(3/8) (5/8)

(1/4)
(3/4)

Sa loi est PX,Y = 1
4
δ(1,3) + 1

8
δ(1,4) + 5

8
δ(2,4). Ses lois marginales sont PX = 3

8
δ1 + 5

8
δ2 et

PY = 1
4
δ3 + 3

4
δ4.

6.2. Fonction de répartition

Nous introduisons une notion de fonction de répartition d’un couple de variables
aléatoires analogue à celle des variables réelles.

Définitions 6.2. Une application (X,Y ) : Ω → R2 est un couple aléatoire si pour
tout x, y ∈ R, l’ensemble {ω ∈ Ω; X(ω) ≤ x et Y (ω) ≤ y} appartient à A.
La fonction de répartition jointe de (X,Y ) est la fonction FX,Y : R2 → [0, 1] donnée par

FX,Y (x, y) = P(X ≤ x, Y ≤ y).

45
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On montre aisément que pour tous a ≤ b, c ≤ d ∈ R

P(a < X ≤ b, c < Y ≤ d)

= FX,Y (b, d)− FX,Y (a, d)− FX,Y (b, c) + FX,Y (a, c).

+−

−+

b

b b

b

a b x

y

c

d

En d’autres termes, nous pouvons évaluer la probabilité que le point aléatoire (X,Y )
"tombe" dans la région rectangulaire ]a, b]×]c, d] du plan R2. En travaillant de façon
analogue à la Proposition 2.9, on récupère les probabilités de tomber dans des régions
rectangulaires quelconques, puis leurs réunions dénombrables, etc. . . De fil en aiguille,
il est possible de montrer, grâce aux propriétés des mesures de probabilité, l’assertion
suivante :

Proposition 6.3. FX,Y spécifie de manière unique P((X,Y ) ∈ C) pour toutes les
parties ouvertes C de R2. En d’autres termes, FX,Y spécifie entièrement le loi jointe PX,Y .

Les fonctions de répartition marginales de X et de Y sont

FX(x) = P(X ≤ x) = lim
n→∞

P(X ≤ x et Y ≤ n)

= FX,Y (x,∞) := lim
y→∞

FX,Y (x, y),

FY (y) = P(Y ≤ y) = lim
n→∞

P(X ≤ n et Y ≤ y)

= FX,Y (∞, y) = lim
x→∞

FX,Y (x, y),

On constate que, même sur l’Exemple 6.1 qui est très simple, la fonction de répartition
FX,Y est pénible à expliciter. En effet, elle nécessite de découper le plan en 5 zones
rectangulaires. Nous n’emploierons donc que très peu souvent les fonctions de répartition
dans les calculs explicites.

6.3. Indépendance

Deux variables aléatoires discrètes X et Y sont dites indépendantes si pour tous
x, y ∈ R, P(X = x et Y = y) = P(X = x)P(Y = y). Nous revisiterons plus en détail
cette notion importante au Chapitre 9.
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Il est clair que cette définition de l’indépendance ne peut pas être conservée si l’une
au moins des variables (par exemple X) est continue, puisque dans ce cas P(X = x) = 0,
pour tout x ∈ R. Nous adopterons la définition générale suivante.

Définition 6.4. Les variables aléatoires X et Y sont dites indépendantes si

P(X ≤ x et Y ≤ y) = P(X ≤ x)P(Y ≤ y), ∀x, y ∈ R.

On vérifie que pour des variables aléatoires discrètes, cette définition de l’indépen-
dance est équivalente à celle rappelée plus haut.

Une formulation équivalente est : X et Y sont indépendantes si et seulement si

FX,Y (x, y) = FX(x)FY (y), ∀x, y ∈ R.

Proposition 6.5. Soient X et Y deux variables aléatoires indépendantes. Alors pour
toute réunion dénombrable d’intervalles A et B, nous avons

P(X ∈ A et Y ∈ B) = P(X ∈ A)P(Y ∈ B)

et pour toutes fonctions numériques continues par morceaux ϕ et ψ, les variables aléa-
toires ϕ(X) et ψ(Y ) sont indépendantes.

Notons que lorsque X et Y sont des variables discrètes dont toutes les valeurs sont
isolées, toutes les fonctions ϕ et ψ sont continues (en restriction à X(Ω) et Y (Ω)).

Idée de la preuve. Nous n’avons pas les outils suffisants pour donner une preuve
complète (donc une preuve) de ce résultat. Notons toutefois qu’il est possible de montrer,
de façon similaire à la preuve de la Proposition 6.3, que X et Y sont indépendantes si
et seulement si pour toutes réunions dénombrables de parties ouvertes A et B de R,
P(X ∈ A et Y ∈ B) = P(X ∈ A)P(Y ∈ B).

Maintenant, nous pouvons écrire pour toute paire d’ouverts A,B :

P

(
ϕ(X) ∈ A et ψ(Y ) ∈ B

)
= P

(
X ∈ ϕ−1(A) et Y ∈ ψ−1(B)

)

= P

(
X ∈ ϕ−1(A)

)
P

(
Y ∈ ψ−1(B)

)

= P(ϕ(X) ∈ A)P(ψ(Y ) ∈ B)

où l’avant-dernière égalité est une conséquence de l’indépendance deX et Y et du fait que
ϕ et ψ sont continues par morceaux, les ensembles ϕ−1(A) et ψ−1(B) sont des réunions
dénombrables d’ouverts. �

Cette notion mathématique de l’indépendance est cohérente avec la notion intuitive
que nous en avons. Pour étayer cette affirmation, donnons-en une illustration simple.

Exemple 6.6. Nous avons deux urnes contenant des boules de couleur numérotées.
– La première urne contient 5 boules numérotées : 1,2,3,4 et 5. Les boules 1,2,3 sont

jaunes et les boules 4,5 sont rouges.
– La deuxième urne contient 3 boules numérotées : a,b,c. Les boules a,b sont vertes

et la boule c est bleue.
On note X et Y les numéros aléatoires des boules tirées au hasard dans la première et
la seconde urne. On suppose que ces tirages sont uniformes sur {1, 2, 3, 4, 5} et {a, b, c}.
De même, on note U et V les couleurs aléatoires des boules tirées au hasard dans la
première et la seconde urne : U = ϕ(X) et V = ψ(Y ) avec ϕ(1) = ϕ(2) = ϕ(3) = jaune,
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ϕ(4) = ϕ(5) = rouge, ψ(a) = ψ(b) = vert et ψ(c) = bleu.On a donc P(X = jaune) = 3/5,
P(X = rouge) = 2/5 ainsi que P(Y = vert) = 2/3, P(Y = bleu) = 1/3.
Si de plus ces tirages sont indépendants (au sens habituel du terme), on n’avantage aucun
couple de boules au détriment d’autres : la loi de (X,Y ) est uniforme sur {1, 2, 3, 4, 5}×
{a, b, c}. On constate qu’alors X et Y sont des variables aléatoires indépendantes au sens
mathématique. En effet, pour tous A ⊂ {1, 2, 3, 4, 5} et B ⊂ {a, b, c},

P((X,Y ) ∈ A×B) =
#(A×B)

#({1, 2, 3, 4, 5} × {a, b, c})

=
#(A)×#(B)

#({1, 2, 3, 4, 5})×#({a, b, c})

=
#(A)

5
×#(B)

3
= P(X ∈ A)P(Y ∈ B)

En particulier, en prenant A = ϕ−1(jaune) = {1, 2, 3} et B = ψ−1(vert) = {a, b} on
obtient

P(U = jaune, V = vert) = P((X,Y ) ∈ {1, 2, 3}×{a, b})
= P(X ∈ {1, 2, 3})P(Y ∈ {a, b})
= P(U = jaune)P(V = vert)

et de même pour les autres couleurs. Ce qui prouve l’indépendance mathématique de U
et V. Mais il est clair que si les tirages dans les deux urnes sont indépendants (au sens
habituel) il en est de même pour les couleurs des boules tirées.

Exercice 6.7. Soient X et Y deux variables aléatoires indépendantes de fonctions
de répartition FX et FY . Déterminer les lois de U = max(X,Y ) et V = min(X,Y ).

Solution. Du fait que pour tout t ∈ R, max(x, y) ≤ t⇐⇒ (x ≤ t et y ≤ t),

FU(t) = P(max(X,Y ) ≤ t)

= P({X ≤ t} ∩ {Y ≤ t})
= P(X ≤ t)P(Y ≤ t)

= FX(t)FY (t)

où l’on a fait usage de l’indépendance dans l’avant-dernière égalité.

De même, pour tout t ∈ R, min(x, y) > t⇐⇒ (x > t) et (y > t), donc

1− FV (t) = P(min(X,Y ) > t)

= P({X > t} ∩ {Y > t})
= P(X > t)P(Y > t)

= [1− FX(t)][1− FY (t)]

d’où

FV (t) = 1− [1− FX(t)][1− FY (t)], t ∈ R.

ce qui détermine la loi de V. �
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Exemple 6.8. On se donne deux variables aléatoires X et Y indépendantes de lois
exponentielles E(λ) et E(µ). Calculons à l’aide de l’exercice précédent les lois de U =
max(X,Y ) et V = min(X,Y ).
Nous avons pour tout t ≤ 0, FX(t) = FY (t) = 0 et pour tout t ≥ 0, FX(t) = 1 − e−λt,
FY (t) = 1− e−µt. Par conséquent pour tout t > 0,

fU(t) = F ′
U(t) = fX(t)FY (t) + FX(t)fY (t)

= λe−λt(1− e−µt) + µe−µt(1− e−λt)
et

1− FV (t) = [1− FX(t)][1− FY (t)]

= e−λte−µt = e−(λ+µ)t

Pour tout t ≤ 0, FU(t) = FV (t) = 0.
On constate que V = min(X,Y ) admet la loi exponentielle E(λ+ µ).

6.4. Couples discrets

Soit un couple de variables aléatoires (X,Y ) prenant ses valeurs dans l’ensemble
produit X ×Y avec X = {x1, . . . , xL} et Y = {y1, . . . , yK}. Pour tout indice n = (l, k) ∈
N := {1, . . . , L} × {1, . . . , K}, on note zn = (xl, yk). Cet ensemble étant fini, le couple
Z = (X,Y ) est une variable aléatoire discrète à valeurs dans X × Y . Elle est donc de
la forme PX,Y = PZ =

∑
n∈N pnδzn =

∑
1≤l≤L,1≤k≤K pl,kδ(xl,yk) avec pl,k = P((X,Y ) =

(xl, yk)) = P(X = xl et Y = yk). Pour plus de clarté, on note pl,k = pX,Y (xl, yk) et on
peut regrouper l’ensemble de ces probabilités élémentaires en un tableau matriciel :

y1 y2 · · · yK ← Y
x1 pX,Y (x1, y1) pX,Y (x1, y2) · · · pX,Y (x1, yK) pX(x1)
x2 pX,Y (x2, y1) pX,Y (x2, y2) · · · pX,Y (x2, yK) pX(x2)
...

...
...

...
...

xL pX,Y (xL, y1) pX,Y (xL, y2) · · · pX,Y (xL, yK) pX(xL)
X ↑ pY (y1) pY (y2) · · · pY (yK) 1

dont l’intérieur décrit la loi jointe de (X,Y ). Les lois marginales sont données par PX =∑
1≤l≤L pX(xl)δxl

et PY =
∑

1≤k≤K pY (yk)δyk
avec

pX(xl) =
∑

1≤k≤K
pX,Y (xl, yk), 1 ≤ l ≤ L

pY (yk) =
∑

1≤l≤L
pX,Y (xl, yk), 1 ≤ k ≤ K

puisque pX(xl) = P(X = xl) = P(X = xl et Y ∈ Y) = P((X,Y ) ∈ {xl}×Y) =∑
1≤k≤K P(X = xl et Y = yk) et de même pour pY (yk).

Par conséquent la dernière ligne du tableau est constituée des sommes par colonnes et
la dernière colonne des sommes par lignes : les marges du tableau spécifient les lois
marginales PX et PY .

De façon plus générale, soient X et Y deux variables aléatoires à valeurs dans des
ensembles dénombrables X et Y . Alors le couple (X,Y ) est à valeurs dans l’ensemble
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dénombrable X × Y (voir la Proposition A.4) et sa loi jointe est de la forme

PX,Y =
∑

x∈X ,y∈Y
pX,Y (x, y)δ(x,y).

et on montre comme précédemment la

Proposition 6.9. Les lois marginales sont PX =
∑

x∈X pX(x)δx et PY =
∑

y∈Y pY (y)δy
avec

pX(x) =
∑

y∈Y
pX,Y (x, y), x ∈ X

pY (y) =
∑

x∈X
pX,Y (x, y), y ∈ Y .

Exemple 6.10. Considérons les deux lois jointes spécifiées par les tableaux suivants :

1 3 ← Y
-1 0,1 0,2 0,3
2 0,45 0,25 0,7
X ↑ 0,55 0,45 1

1 3 ← Y
-1 0,2 0,1 0,3
2 0,35 0,35 0,7
X ↑ 0,55 0,45 1

On constate que ces deux lois jointes sont distinctes bien qu’elles possèdent les mêmes
lois marginales. Par conséquent la loi jointe PX,Y n’est pas spécifiée par la donnée des
deux lois marginales PX et PY . Il y a plus d’information dans l’intérieur du tableau que
sur les marges.

Proposition 6.11. Soit (X,Y ) de loi PX,Y =
∑

x∈X ,y∈Y pX,Y (x, y)δ(x,y). Les variables

X et Y sont indépendantes si et seulement s’il existe deux fonctions q : X → [0, 1] et
r : Y → [0, 1] telles que pour tous x ∈ X et y ∈ Y nous avons pX,Y (x, y) = q(x)r(y).
Dans ce cas, nous avons aussi

pX,Y (x, y) = pX(x)pY (y), x ∈ X , y ∈ Y .

Démonstration. C’est une conséquence directe de la Proposition 6.5 en prenant
A = {x} et B = {y} avec x ∈ X et y ∈ Y .
Notons aussi que lorsque pX,Y (x, y) = q(x)r(y), pX(x) = aq(x) pour tout x avec a =∑

y∈Y r(y). De même pour tout y, pY (y) = br(y) avec 1 =
∑

y∈Y pY (y) = b
∑

y∈Y r(y) =

ab. Finalement, r(x)q(y) = pX(x)pY (y)/(ab) = pX(x)pY (y). �

Exemple 6.12. Considérons la loi jointe spécifiée par le tableau

1 3 ← Y
-1 0,165 0,135 0,3
2 0,385 0,315 0,7
X ↑ 0,55 0,45 1

On constate qu’il posséde la structure produit pX,Y (x, y) = pX(x)pY (y), ∀x, y. Les va-
riables X et Y sont donc indépendantes. On note que les lois marginales PX et PY sont
les mêmes que celles de l’Exemple 6.10.
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Puisque le couple discret (X,Y ) est une variable discrète à valeurs dans l’ensemble
dénombrable X × Y (voir la Proposition A.4) l’espérance de ϕ(X,Y ) est donnée par le
Théoréme 3.10 qui dans ce cas précis s’écrit

(6.13) Eϕ(X,Y ) =
∑

x∈X ,y∈Y
ϕ(x, y)pX,Y (x, y)

et qui est correctement définie dès lors que
E|ϕ(X,Y )| =∑x∈X ,y∈Y |ϕ(x, y)|pX,Y (x, y) <∞.

On obtient immédiatement la

Proposition 6.14 (Linéarité et croissance).

(1) En particulier, avec ϕ(x, y) = ax+ by, nous obtenons la linéarité de l’espérance

E(aX + bY ) = aEX + bEY, a, b ∈ R

pour toute variables aléatoires X et Y telles que E|X| <∞ et E|Y | <∞.
Plus généralement pour toutes fonctions ϕ et ψ telles que E|ϕ(X,Y )| < ∞ et
E|ψ(X,Y )| <∞ et tous réels a, b, nous avons

E[aϕ(X,Y ) + bψ(X,Y )] = aEϕ(X,Y ) + bEψ(X,Y ).

(2) Si les fonctions ϕ, ψ : X × Y → R sont telles que ϕ ≤ ψ, alors Eϕ(X,Y ) ≤
Eψ(X,Y ).

Définition 6.15. Nous définissons la covariance de (X,Y ) par

Cov(X,Y ) := E[(X − EX)(Y − EY )]

c’est-à-dire
Cov(X,Y ) =

∑

x∈X ,y∈Y
(x− EX)(y − EY )pX,Y (x, y).

On dit que X et Y sont décorellées si Cov(X,Y ) = 0.

Noter que, tout comme l’espérance, la covariance n’est pas toujours définie. Il faut
pour cela que

∑
x∈X ,y∈Y |(x− EX)(y − EY )|pX,Y (x, y) <∞. On montrera au Corollaire

6.37 qu’une condition suffisante est que E(X2) <∞ et E(Y 2) <∞.
Un simple calcul nous mène à

Cov(X,Y ) = E(XY )− E(X)E(Y ).

Proposition 6.16. Soient X et Y deux variables aléatoires discrètes indépendantes.

(1) Pour toutes fonctions ϕ sur X et ψ sur Y telles que E|ϕ(X)| <∞ et E|ψ(Y )| <
∞, nous avons

E[ϕ(X)ψ(Y )] = E[ϕ(X)]E[ψ(Y )].

(2) Si E|X| <∞ et E|Y | <∞ alors Cov(X,Y ) = 0.

Démonstration. • Preuve de (1). Avec la Proposition 6.11 nous avons

E[ϕ(X)ψ(Y )] =
∑

x∈X ,y∈Y
ϕ(x)ψ(y)pX(x)pY (y)

=
∑

x∈X
ϕ(x)pX(x)

∑

y∈Y
ψ(y)pY (y)

= E[ϕ(X)]E[ψ(Y )]
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qui est le résultat annoncé.

• Preuve de (2). Grâce à (1), nous avons E(XY ) = E(X)E(Y ) c’est-à-dire Cov(X,Y ) =
0. �

L’exercice suivant montre que la réciproque de l’assertion (2) de cette proposition est
fausse.

Exercice 6.17.
(a) On considère le couple aléatoire (X,Y ) dont la loi est uniforme sur les quatre points

du plan (1, 0), (0, 1), (−1, 0) et (0,−1). Montrer que Cov(X,Y ) = 0 mais que X et
Y ne sont pas indépendantes.

(b) On considère le couple aléatoire (X,Y ) dont la loi est uniforme sur les huits points
du plan d’affixes eikπ/4, 0 ≤ k ≤ 7.

b

b

b

b

b

b

b

b

0 1−1

1

−1

y

xπ/4

Montrer que Cov(X,Y ) = 0 mais que X et Y ne sont pas indépendantes.

Solution. Nous ne donnons que la solution de (a). Nous avons PX = PY = 1
4
δ−1 +

1
2
δ0+

1
4
δ1 de sorte que EX = EY = 0. De plusXY = 0, donc EXY = 0 et Cov(X,Y ) = 0.

D’autre part X et Y ne sont pas des variables indépendantes puisque P(X = 1)P(Y =
0) = 1

4
× 1

2
= 1/8 6= 1/4 = P((X,Y ) = (1, 0)). �

6.5. Couples continus

Par analogie avec les variables aléatoires continues, nous introduisons la notion sui-
vante.

Définition 6.18. Un couple aléatoire (X,Y ) de fonction de répartition jointe FX,Y
est dit continu, s’il existe une fonction intégrable fX,Y : R2 → [0,∞[ telle que

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (s, t) dsdt, ∀x, y ∈ R.

Dans ce cas, la fonction fX,Y est appelée fonction de densité jointe du couple aléatoire
(X,Y ).

On déduit de cette définition que si FX,Y est continûment dérivable alors

(6.19) fX,Y (x, y) =
∂2

∂x∂y
FX,Y (x, y).

Proposition 6.20. Les lois marginales PX et PY admettent les densités

fX(x) =

∫

R

fX,Y (x, y) dy, x ∈ R

fY (y) =

∫

R

fX,Y (x, y) dx, y ∈ R
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Démonstration. Nous avons vu que les fonctions de répartition marginales de X
et de Y sont FX(x) = FX,Y (x,∞) et FY (y) = FX,Y (∞, y). En d’autres termes, FX(x) =∫ x
−∞
(∫

R
fX,Y (s, y) dy

)
ds d’où il vient que fX(x) =

∫
R
fX,Y (x, y) dy. De la même manière,

nous obtenons que la fonction de densité marginale de Y est fY (y) =
∫

R
fX,Y (x, y) dx. �

Définition 6.21. Par analogie avec (6.13) et la définition (3.18) qui est justifiée par
le Théorème C.10, nous définissons (sans plus de justification cette fois-ci) l’espérance
de la variable aléatoire ϕ(X,Y ) par

Eϕ(X,Y ) :=

∫∫

R2

ϕ(x, y)fX,Y (x, y) dxdy

pour toute fonction ϕ : R2 → R telle que |ϕ|fX,Y soit intégrable et
∫∫

R2 |ϕ(x, y)|fX,Y (x, y) dxdy <
∞.

On déduit immédiatement de cette définition la

Proposition 6.22 (Linéarité et croissance).

(1) En particulier, avec ϕ(x, y) = ax+ by, nous obtenons la linéarité de l’espérance

E(aX + bY ) = aEX + bEY, a, b ∈ R

pour toute variables aléatoires X et Y telles que E|X| <∞ et E|Y | <∞.
Plus généralement pour toutes fonctions ϕ et ψ telles que E|ϕ(X,Y )| < ∞ et
E|ψ(X,Y )| <∞, nous avons

E[ϕ(X,Y ) + ψ(X,Y )] = Eϕ(X,Y ) + Eψ(X,Y ).

(2) Si les fonctions ϕ, ψ : R2 → R sont telles que ϕ ≤ ψ, alors Eϕ(X,Y ) ≤
Eψ(X,Y ).

Comme pour les couples discrets nous définissons la covariance de (X,Y ) par

Cov(X,Y ) := E[(X − EX)(Y − EY )]

=

∫∫

R2

(x− EX)(y − EY )fX,Y (x, y) dxdy.

Noter que, tout comme l’espérance, la covariance n’est pas toujours définie. Nous verrons
au Corollaire 6.37 qu’il suffit pour cela E(X2),E(Y 2) <∞.

Comme le montre la proposition suivante, la fonction de densité jointe d’un couple
aléatoire continu de variables indépendantes a une forme produit.

Proposition 6.23.

(1) Soit (X,Y ) un couple aléatoire continu de fonction de densité jointe fX,Y . S’il
existe des fonctions g et h telles que

fX,Y (x, y) = g(x)h(y), x, y ∈ R,

alors X et Y sont des variables aléatoires indépendantes. De plus, la fonction
de densité jointe s’écrit alors : fX,Y (x, y) = fX(x)fY (y).

(2) Soient X et Y des variables aléatoires indépendantes qui admettent des fonctions
de densité fX et fY continues par morceaux. Alors la fonction de densité jointe
de (X,Y ) est

fX,Y (x, y) = fX(x)fY (y), x, y ∈ R.
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Démonstration. • Preuve de (1). La première partie de la proposition est presque
immédiate. La forme fX,Y (x, y) = fX(x)fY (y) s’obtient par un raisonnement analogue à
celui de la preuve de la Proposition 6.11.

• Preuve de (2). Du fait des hypothèses, FX et FY sont des fonctions dérivables partout
sauf en un nombre fini de points. De ce fait, la fonction de répartition jointe FX,Y (x, y) =
FX(x)FY (y) est partout dérivable, sauf sur la réunion d’un nombre fini de droites (dont
l’aire est nulle et que l’on peut exclure des intégrales doubles). En dehors de cet ensemble,
on peut appliquer (6.19) qui nous donne fX,Y (x, y) = F ′

X(x)F ′
Y (y) = fX(x)fY (y). Ce qui

achève la preuve. �

Le résultat suivant est une conséquence immédiate de la proposition précédente.

Corollaire 6.24. Soit (X,Y ) un couple aléatoire continu de variables indépen-
dantes.

(1) Si E|X|,E|Y | <∞, alors Cov(X,Y ) = 0.

(2) Si E|ϕ(X)|,E|ψ(Y )| <∞, alors E[ϕ(X)ψ(Y )] = Eϕ(X)Eψ(Y ).

Démonstration. Immédiate. �

Attention : Il existe des couples aléatoires continus (X,Y ) de covariance nulle dont les
composantes X et Y ne sont pas indépendantes.

Exercice 6.25. Montrer, sans calculs explicites, que c’est le cas pour le tirage aléa-
toire uniforme d’un point (X,Y ) du disque unité.
Au fait, quelle peut bien être la fonction de densité jointe de ce couple aléatoire ?

Exemple 6.26 (L’aiguille de Buffon). Les lignes d’équations y = n (n ∈ Z), sont
tracées sur un plan et une aiguille de longueur unité est jetée sur ce plan. Quelle est
la probabilité qu’elle intersecte l’une des lignes ? On suppose que l’aiguille n’a pas de
préférence de position ni de direction.

Cherchons la solution de ce problème. Soient (X,Y ) les coordonnées du centre de
l’aiguille et Θ l’angle, modulo π, de l’aiguille avec l’axe des x. On note Z = Y − ⌊Y ⌋
(⌊Y ⌋ est la partie entière de Y ) la distance du centre de l’aiguille à la ligne immédiatement
en-dessous de lui. Nos hypothèses se traduisent par

(a) Z est distribué uniformément sur [0, 1] : fZ = 1[0,1].

(b) Θ est distribué uniformément sur [0, π] : fΘ = 1
π
1[0,π].

(c) Z et Θ sont indépendantes : fZ,Θ(z, θ) = fZ(z)fΘ(θ).

Par conséquent, (Z,Θ) a pour fonction de densité jointe

f(z, θ) =
1

π
1(0≤z≤1,0≤θ≤π).

A l’aide d’un dessin, on constate qu’il y a intersection si et seulement si Z ∈ I avec

I =

{
(z, θ) ∈ [0, 1]× [0, π]; z ≤ 1

2
sin θ ou 1− z ≤ 1

2
sin θ

}
.
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0

1

z

(sin θ)/2

1− (sin θ)/2

1/2

θ

Le lieu des centres possibles de l’aiguille impliquant une intersection est en rouge.

Par conséquent,

P(intersection) =

∫∫

I

f(z, θ) dzdθ

=
1

π

∫ π

0

(∫ 1
2

sin θ

0

dz +

∫ 1

1− 1
2

sin θ

dz

)
dθ

= 2/π.

Buffon a effectivement mis en place cette expérience pour obtenir une valeur approchée
de π.

Exemple 6.27 (Loi normale bivariée). Soit f : R2 → R la fonction définie par

f(x, y) =
1

2π
√

1− ρ2
exp

(
− 1

2(1− ρ2)
(x2 − 2ρxy + y2)

)

où −1 < ρ < 1. On vérifie que f est bien une fonction de densité jointe, c’est-à-dire :
f(x, y) ≥ 0 et

∫∫
R2 f(x, y) dxdy = 1.

Exercice 6.28.

(a) Vérifier que
∫∫

R2 f(x, y) dxdy = 1.

(b) Montrer que les lois marginales de X et de Y sont des lois normales centrées réduites.

(c) Montrer que Cov(X,Y ) =
∫∫

R2 xyf(x, y) dxdy = ρ.

La fonction de densité jointe d’une loi normale bivariée générale est plus compliquée.
On dit que (X,Y ) suit une loi normale bivariée de moyennes µ1 et µ2, de variances σ2

1

et σ2
2 et de corrélation ρ avec −1 < ρ < 1, si sa fonction de densité jointe est donnée par

(6.29) f(x, y) =
1

2πσ1σ2

√
1− ρ2

exp

[
−1

2
Q(x, y)

]

où σ1, σ2 > 0 et Q est la forme quadratique :

Q(x, y) =
1

1− ρ2

[(
x− µ1

σ1

)2

− 2ρ

(
x− µ1

σ1

)(
y − µ2

σ2

)
+

(
y − µ2

σ2

)2
]
.

Exercice 6.30. Montrer que
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(a) X ∼ N (µ1, σ
2
1) et Y ∼ N (µ2, σ

2
2),

(b) Cov(X,Y ) = ρσ1σ2.

A l’aide de la Définition 6.36 plus bas du coefficient de corrélation Cor(X,Y ), l’énoncé
de (b) est Cor(X,Y ) = ρ.

Proposition 6.31. Soit (X,Y ) un couple aléatoire normal. Si Cov(X,Y ) = 0 alors
X et Y sont des variables aléatoires indépendantes.

Ce résultat est remarquable car en général la décorrélation (covariance nulle) n’im-
plique pas l’indépendance, voir l’Exercice 6.17. C’est une propriété spécifique des couples
aléatoires normaux.

Démonstration. Compte tenu de l’exercice précédent, nous avons ρ = 0. En injec-
tant ρ = 0 dans la formule (6.29), on obtient f(x, y) = fX(x)fY (y) (avec X ∼ N (µ1, σ

2
1)

et Y ∼ N (µ2, σ
2
2)) et on conclut avec la Proposition 6.23. �

Exercice 6.32. Soit (X,Y ) un couple aléatoire de fonction de densité jointe

f(x, y) = 1{x,y>0}
1

y
exp

(
−y − x

y

)
, x, y ∈ R.

Trouver la loi marginale de Y.

Solution. Pour tout y ≤ 0, fY (y) =
∫

R
f(x, y) dx = 0 et pour tout y > 0,

fY (y) =

∫

R

f(x, y) dx =

∫ ∞

0

1

y
exp

(
−y − x

y

)
dx = e−y

puisque l’on reconnaît que x 7→ 1{x>0}
1
y
exp

(
−x
y

)
est la fonction de densité d’une loi

(exponentielle). Par conséquent Y ∼ E(1). �

6.6. Fonctions caractéristiques

On les définit de façon analogue aux transformées de Laplace et de Fourier des va-
riables réelles, voir la Définition 5.6.

Définitions 6.33.

(1) La transformée de Laplace de la loi de (X,Y ) est définie par

(s, t) ∈ R2 7→ LX,Y (s, t) = EesX+tY ∈ [0,∞]

(2) La fonction caractéristique de la loi de (X,Y ) est définie par

(s, t) ∈ R2 7→ φX,Y (s, t) = Eei(sX+tY ) ∈ C

où i est le nombre imaginaire tel que i2 = −1.

On peut montrer, mais cette preuve est au delà du niveau de ce cours, que la fonction
caractéristique caractérise la loi PX,Y . C’est-à-dire que si nous connaissons φX,Y , on
peut calculer PX,Y et qu’il n’y a qu’une seule loi PX,Y qui admet φX,Y comme fonction
caractéristique. Un résultat analogue est valide pour la transformée de Laplace sous
l’hypothèse que LX,Y est finie sur un voisinage ouvert de (0, 0).

Proposition 6.34. Soient (X,Y ) un couple discret ou continu.
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(1) Les variables X et Y sont indépendantes si et seulement si la fonction caracté-
ristique de (X,Y ) satisfait

φXY (s, t) = φX(s)φY (t), s, t ∈ R.

(2) Si les transformées de Laplace LX et LY sont finies au voisinage de zéro, alors
X et Y sont indépendantes si et seulement si

LXY (s, t) = LX(s)LY (t), s, t ∈ R.

Démonstration. • Preuve de (1). Soient X et Y indépendantes. À l’aide de la
Proposition 6.16 et du Corollaire 6.24, on obtient φXY (s, t) = Eei(sX+tY ) = E[eisXeitY ] =
EeisXEeitY = φX(s)φY (t).
Montrons la réciproque. On se donne (X,Y ) tel que φXY (s, t) = φX(s)φY (t) pour tous

s, t. Soit (U, V ) un couple de variables indépendantes telles que U
L
= X et V

L
= Y.

Ceci implique bien sûr que φU = φX et φV = φY . D’après ce que nous venons de
montrer, nous avons φU,V (s, t) = φU(s)φV (t) = φX(s)φY (t). Donc, φU,V = φX,Y . Mais
puisque les fonctions caractéristiques caractérisent les lois (résultat admis), ceci implique

(X,Y )
L
= (U, V ). D’où le résultat annoncé.

• Preuve de (2). Analogue à celle de (1). �

6.7. Inégalité de Cauchy-Schwarz

Cette inégalité permet de contrôler en espérance les fluctuations jointes de (X,Y ) à
l’aide des variances individuelles de X et Y, voir le Corollaire 6.37 plus bas.

Théorème 6.35 (Inégalité de Cauchy-Schwarz). Pour tout couple aléatoire discret
ou continu (X,Y ) nous avons

[
E(XY )

]2 ≤ E(X2)E(Y 2)

avec égalité si et seulement s’il existe a, b ∈ R dont l’un au moins est non nul tels que
P(aX = bY ) = 1.

Il est entendu que dans l’énoncé de ce théorème que E|XY | < ∞ de sorte que les
intégrales qui interviennent sont bien définies, éventuellement à valeurs infinie.

Démonstration. On peut supposer sans perte de généralité que E(X2),E(Y 2) <
∞.
Pour tous a, b ∈ R, l’espérance de la variable positive (aX −BY )2 est positive. Donc

E

(
(aX − bY )2

)
= a2E(X2)− 2abE(XY ) + b2E(Y 2) ≥ 0

Si P(X = 0) = 1, l’assertion est évidente.
Si P(X = 0) < 1, alors E(X2) > 0 et l’inégalité ci-dessus peut être vue comme

une inéquation du second degré en a, à b fixé. Ceci implique que le discriminant réduit :

b2
(
[E(XY )]2−E(X2)E(Y 2)

)
est strictement négatif (si a2E(X2)−2abE(XY )+b2E(Y 2) >

0 pour tout a) ou nul (s’il existe un a tel que a2E(X2)−2abE(XY )+b2E(Y 2) = E

(
(aX−

bY )2
)

= 0).
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En choisissant b 6= 0, on obtient [E(XY )]2 < E(X2)E(Y 2) dans le premier cas et

[E(XY )]2 = E(X2)E(Y 2) lorsque E

(
(aX − bY )2

)
= 0, c’est-à-dire lorsque P(aX − bY =

0) = 1. �

Définition 6.36. Le coefficient de corrélation de (X,Y ) est défini par

Cor(X,Y ) =
Cov(X,Y )√

Var(X)Var(Y )
.

Pour que cette définition soit valide, il est nécessaire que E(X2) < ∞ et E(Y 2) < ∞ et
que VarX,VarY > 0.

Une conséquence simple de l’inégalité de Cauchy-Schwarz est le

Corollaire 6.37.

(1) Pour que Cov(X,Y ) soit défini, il suffit que E(X2),E(Y 2) <∞.
(2) Soit (X,Y ) tel que 0 < Var(X),Var(Y ) <∞. Alors

−1 ≤ Cor(X,Y ) ≤ 1.

Démonstration. • Preuve de (1). C’est une conséquence immédiate du Théorème
6.35 et du Corollaire 3.35.

• Preuve de (2). On applique le Théorème 6.35 avec X −EX et Y −EY à la place de X
et Y. �



CHAPITRE 7

Fonctions d’un couple aléatoire

7.1. Quelques exercices corrigés

Exercice 7.1. Soient X et Y deux variables aléatoires indépendantes de lois nor-
males N (0, 1). Calculer la fonction de densité de W = X2 + Y 2.

Solution. Pour tout w ≥ 0,

P(W ≤ w) =

∫∫

{x2+y2≤w}

1

2π
exp

(
−1

2
(x2 + y2)

)
dxdy

(a)
=

∫ √
w

0

∫ 2π

0

1

2π
exp(−r2/2)r drdθ

(b)
=

∫ w/2

0

e−u du

avec le changement de variable en coordonnées polaires en (a) et en posant u = r2/2 en
(b). On constate que W admet la fonction de densité f(u) = 1(u≥0)

e−u/2

2
. C’est-à-dire

que W suit une loi exponentielle de paramètre 1/2. �

Attention. Ce n’est pas parce que X est une variable aléatoire continue qu’il en est
de même pour Y = ϕ(X). Par exemple, considérer ϕ(x) = 3, ∀x ∈ R.

Exercice 7.2. On se donne un couple aléatoire (X1, X2) de fonction de densité jointe
fX1,X2 et on considère le couple aléatoire (Y1, Y2) tel que

X1 = aY1 + bY2

X2 = cY1 + dY2

avec ad− bc 6= 0. Cherchons la loi de (Y1, Y2).

Solution. Pour cela, évaluons pour tout ensemble B ⊂ R2 (suffisamment régulier)
la probabilité P((Y1, Y2) ∈ B). Soit A l’image de B par T (y1, y2) = (ay1 + by2, cy1 + dy2)
qui est une bijection du fait de l’hypothèse ad− bc 6= 0.

P((Y1, Y2) ∈ B) = P((X1, X2) ∈ A)

=

∫∫

A

fX1,X2(x1, x2) dx1dx2

=

∫∫

B

fX1,X2(ay1 + by2, cy1 + dy2)|ad− bc| dy1dy2

où |ad− bc| est la valeur absolue du jacobien de la transformation T. On en déduit que
(Y1, Y2) est un couple aléatoire continu de fonction de densité jointe :

fY1,Y2(y1, y2) = |ad− bc|fX1,X2(ay1 + by2, cy1 + dy2)

ce qui achève l’exercice. �
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En fait, le procédé est général pour toute transformation bijective T.

Exercice 7.3. Soient (X,Y ) deux variables aléatoires indépendantes exponentielles
de paramètre λ. Trouver la fonction de densité jointe de

U = X + Y, V = X/Y

et montrer que ce sont des variables aléatoires indépendantes.

Solution. On considère la transformation S donnée par

S(x, y) = (x+ y, x/y), x, y > 0.

Elle est bijective et son inverse S−1 donnée par

(x, y) = S−1(u, v) =

(
uv

1 + v
,

u

1 + v

)
, u, v > 0

a pour jacobien

J(u, v) =

∣∣∣∣∣∣

∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

∣∣∣∣∣∣
= − u

(1 + v)2
.

Par conséquent, avec la formule de changement de variables

dxdy = |J(u, v)|dudv,

nous obtenons pour tout B ⊂ R2 (suffisamment régulier),

P((U, V ) ∈ B) = P(S−1(U, V ) ∈ S−1(B))

= P((X,Y ) ∈ S−1(B))

=

∫∫

S−1(B)

1(x>0,y>0)λ
2 exp(−λ(x+ y)) dxdy

=

∫∫

B

1(u>0,v>0)λ
2 exp(−λu) u

(1 + v)2
dudv

Par conséquent, (U, V ) admet la densité

fU,V (u, v) = 1(u>0,v>0)λ
2 exp(−λu) u

(1 + v)2

= [λ2
1(u>0)u exp(−λu)]

[
1(v>0)

1

(1 + v)2

]

où la forme produit de la densité nous indique l’indépendance de U et V. �

7.2. Somme de deux variables aléatoires indépendantes

Soient X et Y deux variables aléatoires continues indépendantes de fonctions de den-
sité fX et fY . Déterminons la loi de S = X+Y. Pour cela nous effectuons le changement
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de variables

{
s = x+ y
t = x

⇐⇒
{
x = t
y = s− t qui nous donne dsdt = dxdy et

FS(u) = P(X + Y ≤ u)

=

∫∫

R2

1(x+y≤u)fX(x)fY (y) dxdy

=

∫∫

R2

1(s≤u)fX(t)fY (s− t)

=

∫ u

−∞

[∫

R

fX(t)fY (s− t) dt
]
ds

cette dernière égalité est dûe au théorème de Fubini. Par conséquent, S est une variable
aléatoire continue de fonction de densité

fX+Y (s) =

∫

R

fX(x)fY (s− x) dx.

Définition 7.4. Soient f et g deux fonctions numériques,

f ∗ g(s) =

∫

R

f(x)g(s− x) dx, s ∈ R

est la convoluée de f et g (si cette intégrale est bien définie). L’opération ∗ est le produit
de convolution.

On constate facilement que f ∗ g = g ∗ f. On vient de montrer le résultat suivant.

Proposition 7.5. Soient X et Y deux variables aléatoires continues indépendantes
de fonctions de densité fX et fY . Alors la somme X + Y est une variable aléatoire
continue de fonction de densité

fX+Y = fX ∗ fY
Exercice 7.6. Soient X et Y deux variables aléatoires indépendantes de lois respec-

tives N (0, σ2) et N (0, τ 2). Montrer que X + Y suit une loi N (0, σ2 + τ 2).

Solution. Pour tout s ∈ R,

fX+Y (s) = fX ∗ fY (s)

=

∫

R

1√
2πσ2

e−x
2/(2σ2) 1√

2πτ 2
e−(s−x)2/(2τ2) dx

=

∫

R

1

2πστ
exp

(
−1

2
[x2/σ2 + (s− x)2/τ 2]

)
dx

Or, x2/σ2 + (s− x)2/τ 2 = σ2+τ2

σ2τ2 (x− σ2

σ2+τ2 s)
2 + s2

σ2+τ2 . Par conséquent,

fX+Y (s) =
1

2πστ
exp

(
−1

2

s2

σ2 + τ 2

)∫

R

exp

(
−1

2

[
σ2 + τ 2

σ2τ 2
(x− σ2

σ2 + τ 2
s)2

])
dx

=
1√

2π(σ2 + τ 2)
exp

(
− s2

2(σ2 + τ 2)

)

puisque
1√

2π σ
2+τ2

σ2τ2

∫

R

exp

(
−1

2

[
σ2 + τ 2

σ2τ 2
(x− σ2

σ2 + τ 2
s)2

])
dx = 1
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en tant que fonction de densité de la loi N ( σ2

σ2+τ2 s,
σ2τ2

σ2+τ2 ). �

On en déduit le résultat suivant.

Proposition 7.7. Soient X1 et X2 des variables aléatoires indépendantes de lois
respectives N (µ1, σ

2
1) et N (µ2, σ

2
2), alors X1 +X2 suit une loi N (µ1 + µ2, σ

2
1 + σ2

2).

Démonstration. La loi de (X1, X2) est égale à celle de (µ1 + σ1Z1, µ2 + σ2Z2) où
(Z1, Z2) est un couple aléatoire normal standard. Ce que nous écrivons rapidement

(X1, X2)
L
= (µ1 + σ1Z1, µ2 + σ2Z2).

Par conséquent, X1 +X2
L
= (µ1 + µ2) + σ1Z1 + σ2Z2. Mais, nous venons de montrer que

σ1Z1 + σ2Z2
L
=
√
σ2

1 + σ2
2Z avec Z ∼ N (0, 1). Ce qui achève la preuve. �

Théorème 7.8. Soient X et Y deux variables aléatoires (discrètes ou continues)
indépendantes de fonctions caractéristiques φX , φY et de transformées de Laplace LX et
LY .

(1) La fonction caractéristique de X + Y est

φX+Y (t) = φX(t)φY (t), t ∈ R.

(2) Si LX et LY sont finies au voisinage de zéro, la transformée de Laplace de X+Y
est

LX+Y (t) = LX(t)LY (t), t ∈ R.

Démonstration. D’aprés la Proposition 6.34, φX+Y (t) = φX,Y (t, t) = φX(t)φY (t)
et LX+Y (t) = LX,Y (t, t) = LX(t)LY (t). �

Exercice 7.9 (Suite de l’Exercice 7.6). On reprend l’Exercice 7.6 à l’aide du Théo-
rème 7.8.

Solution. Grâce à la Proposition 5.11, φX(t) = e−σ
2t2/2 et φY (t) = e−τ

2t2/2. Le
Théorème 7.8 nous donne φX+Y (t) = e−σ

2t2/2e−τ
2t2/2 = e−(σ2+τ2)t2/2 qui est la fonction

caractéristique de N (0, σ2 + τ 2). �



CHAPITRE 8

Conditionnement

8.1. Probabilité conditionnelle

Soit V ∈ A tel que P(V ) > 0. La probabilité de U conditionnelle à V est définie par
la formule de Bayes

P(U |V ) :=
P(U ∩ V )

P(V )
, U ∈ A.

Puisque P(V |V ) = 1, l’univers de P(·|V ) est restreint à V ⊂ Ω.

Ω

U V

U ∩ V

V

Proposition 8.1. La fonction d’ensemble U 7→ P(U |V ) est une mesure de probabilité
sur la tribu A ainsi que sur la tribu AV := {U ∩ V ;U ∈ A}, trace de A sur V. De plus,
AV ⊂ A.

Démonstration. En effet, P(Ω|V ) = P(V |V ) = 1 et si (Un)n≥1 est une suite de
U telle que

⊔
n≥1 Un = Ω, nous avons

⊔
n≥1(Un ∩ V ) = V et d’après la Définition 1.9

d’une mesure de probabilité, P(
⊔
n≥1 Un|V ) = P(

⊔
n≥1(Un ∩ V ))/P(V ) =

∑
n≥1 P(Un ∩

V )/P(V ) =
∑

n≥1 P(Un|V ); ce qui prouve que P(·|V ) est une mesure de probabilité. �

Puisque P(·|V ) est une mesure de probabilité, on peut définir la loi de (X,Y ) sous
P(·|V ) par

PX,Y |V (C) := P((X,Y ) ∈ C|V )

pour C dans la tribu de Borel de R2, ainsi qu’une espérance par rapport à P(·|V )

E(ϕ(X,Y )|V ) :=

∫

R

ϕ(x, y)PX,Y |V (dxdy).

On voit aisément que

(a) lorsque (X,Y ) est un couple aléatoire discret de loi

PX,Y =
∑

x∈X ,y∈Y
pX,Y (x, y)δ(x,y)

on a

PX,Y |V =
∑

x∈X ,y∈Y

1{(x,y)∈X(V )×Y (V )}
P(V )

pX,Y (x, y) δ(x,y)

E(ϕ(X,Y )|V ) =
∑

x∈X(V ),y∈Y (V )

ϕ(x, y)
pX,Y (x, y)

P(V )
;
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(b) lorsque (X,Y ) est un couple aléatoire continu de loi

PX,Y (dxdy) = fX,Y (x, y) dxdy

on a

PX,Y |V (dxdy) =
1{x∈X(V ),y∈Y (V )}

P(V )
fX,Y (x, y) dxdy

E(ϕ(X,Y )|V ) =

∫∫

X(V )×Y (V )

ϕ(x, y)
fX,Y (x, y)

P(V )
dxdy.

On note PX|V (dx) et PY |V (dy) les lois marginales de PX,Y |V (dxdy).

8.2. Conditionnement dans le cas discret

Soit (X,Y ) un couple aléatoire discret de loi PX,Y =
∑

x∈X ,y∈Y pX,Y (x, y)δ(x,y). En
prenant V = {Y = y} avec y ∈ Y tel que pY (y) > 0, on obtient X(V )×Y (V ) = X ×{y}
et

PX,Y |Y=y =
∑

x∈X

pX,Y (x, y)

pY (y)
δ(x,y)

de sorte que

PX|Y=y =
∑

x∈X
pX|Y=y(x) δx avec

pX|Y=y(x) =
pX,Y (x, y)

pY (y)
= P(X = x|Y = y) et(8.2)

E(ϕ(X)|Y = y) =
∑

x∈X
ϕ(x)pX|Y=y(x).(8.3)

De façon analogue, on montre que pour tout x ∈ X tel que pX(x) > 0,

PY |X=x =
∑

y∈Y
pY |X=x(y) δy avec

pY |X=x(y) =
pX,Y (x, y)

pX(x)
= P(Y = y|X = x) et(8.4)

E(ψ(Y )|X = x) =
∑

y∈Y
ψ(y)pY |X=x(y).(8.5)

On remarque qu’il suffit que E|ϕ(X)| <∞ et E|ψ(Y )| <∞ pour que ces sommes soient
absolument convergentes.

Exemple 8.6. On reprend la loi jointe de l’Exemple 6.10 :

1 3 ← Y
-1 0,1 0,2 0,3
2 0,45 0,25 0,7
X ↑ 0,55 0,45 1

On voit que PX|Y=1 = 0,1
0,55

δ−1 + 0,45
0,55

δ2 = 0, 1818 δ−1 +0, 8182 δ2 et que PY |X=2 = 0,45
0,7

δ1 +
0,25
0,7

δ3 = 0, 6429 δ1 + 0, 3571 δ3.



8.3. CONDITIONNEMENT DANS LE CAS CONTINU 65

On a aussi E(X2|Y = 1) = 0, 1818 · (−1)2 + 0, 8182 ·22 = 3, 4546 et E(Y |X = 2) =
0, 6429·1 + 0, 3571·3 = 1, 7142.

Définition 8.7. Pour toutes fonctions ϕ et ψ telles que E|ϕ(X)| <∞ et E|ψ(Y )| <
∞, on définit les variables aléatoires

E(ϕ(X)|Y ) =
∑

y∈Y
1{Y=y}E(ϕ(X)|Y = y)

E(ψ(Y )|X) =
∑

x∈X
1{X=x}E(ψ(Y )|X = x)

et on les appelle espérance de ϕ(X) sachant Y et espérance de ψ(Y ) sachant X.

On note que E(ϕ(X)|Y ) = α(Y ) est la fonction de Y qui vaut E(ϕ(X)|Y = y)
lorsque Y = y et E(ψ(Y )|X) = β(X) est la fonction de X qui vaut E(ψ(Y )|X = x)
lorsque X = x.

Proposition 8.8. Pour toutes fonctions ϕ et ψ telles que E|ϕ(X)| <∞ et E|ψ(Y )| <
∞, nous avons

E[E(ϕ(X)|Y )] = Eϕ(X) et E[E(ψ(Y )|X)] = Eψ(Y ).

Démonstration. Nous avons

E[E(ϕ(X)|Y )] =
∑

y∈Y
pY (y)E(ϕ(X)|Y = y)

=
∑

y∈Y
pY (y)

∑

x∈X
ϕ(x)pX|Y=y(x)

=
∑

y∈Y
pY (y)

∑

x∈X
ϕ(x)

pX,Y (x, y)

pY (y)

=
∑

y∈Y

∑

x∈X
ϕ(x)pX,Y (x, y)

(a)
=

∑

x∈X

∑

y∈Y
ϕ(x)pX,Y (x, y)

=
∑

x∈X
ϕ(x)

∑

y∈Y
pX,Y (x, y)

(b)
=

∑

x∈X
ϕ(x)pX(x)

= Eϕ(X)

Nous avons pu commuter les sommes en (a) car la série est absolument convergente. En
(b), nous avons fait usage de la Proposition 6.9. La seconde égalité se prouve de façon
analogue. �

8.3. Conditionnement dans le cas continu

Soit (X,Y ) un couple aléatoire continu de loi PX,Y (dxdy) = fX,Y (x, y) dxdy. On ne
peut plus considérer aussi simplement que dans le cas discret le conditionnement par
Y = y car pour tout y nous avons P(Y = y) = 0 du fait que Y est une variable continue.
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Nous allons donc introduire des notions analogues aux quantités discrètes sans les justifier
dans un premier temps. Nous en donnerons une justification un peu plus bas.

Pour tout y réel tel que fY (y) > 0, on définit les lois, densités et espérance condi-
tionnelles

PX|Y=y(dx) = fX|Y=y(x) dx avec

fX|Y=y(x) :=
fX,Y (x, y)

fY (y)
et(8.9)

E(ϕ(X)|Y = y) :=

∫

R

ϕ(x)fX|Y=y(x) dx.(8.10)

De façon analogue, on définit pour tout x réel tel que fX(x) > 0,

PY |X=x(dy) = fY |X=x(y) dy avec

fY |X=x(y) :=
fX,Y (x, y)

fX(x)
et(8.11)

E(ψ(Y )|X = x) :=

∫

R

ψ(y)fY |X=x(y) dy.(8.12)

On remarque qu’il suffit que E|ϕ(X)| < ∞ et E|ψ(Y )| < ∞ pour que ces intégrales
soient absolument convergentes.

Exemple 8.13. Le couple (X,Y ) suit la loi uniforme sur le domaine T = {(x, y) ∈
R2; 0 ≤ x ≤ y ≤ 1}, c’est-à-dire que sa loi est PX,Y (dxdy) = fX,Y (x, y) dxdy avec

fX,Y (x, y) = 2 ·1T (x, y) puisque
∫
T
dxdy =

∫ 1

0

[∫ 1

x
dy
]
dx =

∫ 1

0
(1−x) dx = [x−x2/2]10 =

1/2 : l’aire du triangle T vaut 1/2.

x

x
1− x

1

0
1

T

Calculons la densité marginale fX . Pour tout x, fX(x) = 2
∫

R
1((x,y)∈T ) dy. Donc, pour

x 6∈ [0, 1], (x, y) 6∈ T, ∀y ∈ R et fX(x) = 0. Alors que pour tout 0 ≤ x ≤ 1, (x, y) ∈ T ⇔
x ≤ y ≤ 1 et fX(x) = 2

∫ 1

x
dy = 2(1 − x). On a donc fX(x) = 1{0≤x≤1}2(1 − x), x ∈ R.

Par conséquent, si 0 ≤ x < 1, fY |X=x(y) =
1{x≤y≤1}

2(1−x) , y ∈ R. La loi de Y sachant X = x est
donc la loi uniforme sur [x, 1]. On en déduit que pour 0 ≤ x < 1, E(Y |X = x) = (1+x)/2.

Définition 8.14. Pour toutes fonctions ϕ et ψ telles que E|ϕ(X)| <∞ et E|ψ(Y )| <
∞, on définit les variables aléatoires

E(ϕ(X)|Y ) = α(Y ) où α(y) = E(ϕ(X)|Y = y), y ∈ R

E(ψ(Y )|X) = β(X) où β(x) = E(ψ(Y )|X = x), x ∈ R

et on les appelle espérance de ϕ(X) sachant Y et espérance de ψ(Y ) sachant X.
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Proposition 8.15. Pour toutes fonctions ϕ et ψ telles que E|ϕ(X)| <∞ et E|ψ(Y )| <
∞, nous avons

E[E(ϕ(X)|Y )] = Eϕ(X) et E[E(ψ(Y )|X)] = Eψ(Y ).

Démonstration. Nous avons

E[E(ϕ(X)|Y )] =

∫

y

fY (y)E(ϕ(X)|Y = y) dy

=

∫

y

fY (y)

[∫

x

ϕ(x)fX|Y=y(x) dx

]
dy

=

∫

y

fY (y)

[∫

x

ϕ(x)
fX,Y (x, y)

fY (y)
dx

]
dy

=

∫∫

R2

ϕ(x)fX,Y (x, y) dxdy

=

∫

x

ϕ(x)

[∫

y

pX,Y (x, y) dy

]
dx

=

∫

x

ϕ(x)fX(x) dx

= Eϕ(X)

Nous avons pu commuter les intégrales à l’aide de leur convergence absolue. La seconde
égalité se prouve de façon analogue. �

L’ensemble des définitions introduites en (8.9), (8.10), (8.11) et (8.12) est justifié par
l’obtention de la Proposition 8.15 dont l’énoncé est analogue à celui de la Proposition
8.8.

Exemple 8.16 (Suite de l’Exemple 8.13). En appliquant la Proposition 8.15, on
obtient EY = E[E(Y |X)] =

∫
R
(1 + x)/2fX(x) dx =

∫ 1

0
1+x

2
2(1 − x) dx

∫ 1

0
(1 − x2) dx =

[x− x3/3]10 = 2/3.
D’autre part, par symétrie on voit que fY (y) = fX(1 − y) = 2y1{0≤y≤1} de sorte qu’on
retrouve EY =

∫
R
yfY (y) dy =

∫ 1

0
2y2 dy = [2y3/3]10 = 2/3.





CHAPITRE 9

Indépendance (revisitée)

Nous revenons dans ce chapitre sur la notion importante d’indépendance que nous
avons déjà abordée au Chapitre 6.

Lorsque je lance deux fois de suite une pièce de monnaie en la faisant à chaque fois
tourner sur elle-même un grand nombre de fois, je peux me dire avec confiance que ces
deux expériences sont indépendantes l’une de l’autre. En revanche, si en guise de second
lancer je me contente de retourner la pièce à l’issue du premier lancer, il est clair que les
deux expériences ne sont pas indépendantes.

Je lance maintenant ma pièce n fois consécutivement de sorte que je peux de prendre
pour univers de l’expérience Ω = {p,f}n. On suppose que chaque lancer est indépendant
des autres, au sens habituel du terme. Ceci se traduit par le fait que chaque suite de lan-
cers ω ∈ Ω a la même chance de se produire qu’une autre. On fait ici un raisonnement
intuitif liant la notion ressentie d’indépendance à celle de symétrie. Ce raisonnement
n’est pas mathématique, mais il s’impose à notre entendement. Nous devons traduire
l’indépendance des lancers en travaillant, mathématiquement cette fois-ci, avec la pro-
babilité P qui est uniforme sur Ω : P({ω}) = 2−n, ω ∈ Ω.

Exemple 9.1. J’ai une pièce de monnaie et un dé. Je lance d’abord la pièce, puis
le dé. L’univers de l’expérience est Ω = {p,f} × {1, 2, . . . , 6}. On suppose que ces deux
lancers sont indépendants l’un de l’autre de sorte que la probabilité P est uniforme sur
Ω : P((p, 1)) = · · · = P((f, 6)) = 1/12. On construit les variables aléatoires X et Y comme
suit :

X(ω) =

{
0 si ω ∈ {p} × {1, 2, . . . , 6}
1 si ω ∈ {f} × {1, 2, . . . , 6} ; Y (ω) =

{
0 si ω ∈ {p} × {1, 2, 3, 4}
1 sinon

.

On voit que {X = 0} et {X = 1} sont respectivement les événements qui correspondent
à l’obtention de pile et face. La loi de X est 1

2
(δ0 + δ1) et celle de Y est 4

12
δ0 + 8

12
δ1.

Les variables X et Y ne sont pas indépendantes.
En effet, si je sais que Y (ω) = 0, et qu’on me demande de parier sur la valeur de X(ω),
j’aurai avantage à parier sur pile, c’est-à-dire sur X(ω) = 0. Ceci car Y (ω) = 0 implique
que j’ai obtenu pile. Par conséquent, l’information Y (ω) = 0 m’a permis d’obtenir une
information sur X(ω).
Voici une autre manière de voir que X et Y ne sont pas indépendantes. On me demande
de parier sur la valeur de Y (ω). Sans information supplémentaire, j’ai intérêt à parier
sur 1, puisque la loi de Y est 4

12
δ0 + 8

12
δ1. En revanche, si je sais que j’ai obtenu pile, Y

vaudra 0 si mon dé me donne 1,2,3 ou 4, soit 4 chances sur 6. J’ai donc intérêt à parier
sur Y (ω) = 0. Une information sur X m’a permis de modifier mon pari concernant Y.
Ces deux variables ne sont donc pas indépendantes.
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9.1. Définition

À l’aide de l’exemple suivant, nous allons justifier la définition mathématique de
l’indépendance de deux variables aléatoires X et Y.

Exemple 9.2. On joue n + m fois à pile ou face. L’univers de notre expérience
est donc Ω = {p,f}n+m et l’on note ωi ∈ {p,f} le résultat du i-ème lancer ainsi que
ω = (ω1, . . . , ωn+m) ∈ Ω, la description complète de l’expérience. Une notation bien
pratique est celle fournie par les variables aléatoires Zi : ω ∈ Ω 7→ Zi(ω) = ωi ∈ {p,f},
1 ≤ i ≤ n+m ainsi que Z = (Zi)1≤i≤n+m. On a évidemment Z(ω) = ω pour tout ω ∈ Ω
et Zi est le résultat du i-ème lancer.
On prend n = 3 et m = 10. Les variables aléatoires X et Y sont définies par

X = 1 +
3∑

i=1

1{Zi=p} 2i−1 et Y = 1 +
13∑

j=4

1{Zj=p} 2j−1

de sorte que X est une variable discrète uniforme sur {1, . . . , 8} et Y est uniforme sur
{1, . . . , 1024}. Puisque X et Y sont construites respectivements sur des tirages distincts,
les trois premiers pour X et les autres pour Y, ces variables sont indépendantes (au sens
intuitif). La définition mathématique de l’indépendance devra donc être cohérente avec
cette constatation.
Calculons

P(X ∈ A et Y ∈ B)

avec A ⊂ {1, . . . , 8} et B ⊂ {1, . . . , 1024}. L’espace Ω est Ω = {p,f}3+10 = {p,f}13 et
toutes les réalisations ont même probabilité : P(ω) = 2−13, pour tout ω ∈ Ω. L’événement
(X = 3) est égal à (Z1 = f, Z2 = p, Z3 = f). De même, (Y = 6) = (Z4 = p, Z5 = f, Z6 =
p, Z7 = · · · = Z14 = f). Et en explicitant tous les tirages, nous voyons que

(X = 3) = (Z1 = f, Z2 = p, Z3 = f, Z4, . . . , Z14 ∈ {p, f})
(Y = 6) = (Z1, Z2, Z3 ∈ {p, f}, Z4 = p, Z5 = f, Z6 = p, Z7 = · · · = Z14 = f)

On en déduit immédiatement que

(X = 3, Y = 6) = (Z1 = f, Z2 = p, Z3 = f, Z4 = p, Z5 = f, Z6 = p, Z7 = · · · = Z14 = f).

Par conséquent nous avons P(X = 3) = 2−3, P(Y = 6) = 2−10 et P(X = 3, Y = 6) =
2−13. Il en est de même pour tous les événements élémentaires (X = x, Y = y), de sorte
qu’en notant #A et #B les cardinaux de A et B, on obtient

P(X ∈ A, Y ∈ B) = (#A×#B)× 2−13

= (#A× 2−3)× (#B × 2−10)(9.3)

= P(X ∈ A)P(Y ∈ B).

Maintenant, considérons deux fonctions s : {1, . . . , 8} → R et t : {1, . . . , 1024} → R ainsi
que les nouvelles variables éléatoires S = s(X) et T = t(Y ). Puisque S ne dépend que
des trois premiers tirages et T que des autres tirages, ces deux variables aléatoires sont
indépendantes (au sens habituel du terme). Pour tous C,D ⊂ R, en posant A = s−1(C)
et B = t−1(D), nous obtenons (S ∈ C) = (X ∈ A) et (T ∈ D) = (Y ∈ B). De sorte que

P(S ∈ C, T ∈ D) = P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B)

= P(S ∈ C)P(T ∈ D)
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où la deuxième égalité est (9.3).

Cet exemple a préparé le chemin pour la définition mathématique suivante.

Définition 9.4. (Variables indépendantes)

(1) Deux variables aléatoires X et Y sont dites indépendantes sous la probabilité P,
si pour toutes les réunions dénombrables d’intervalles A,B de R,

(9.5) P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B).

(2) Plus généralement, k variables aléatoires X1, . . . , Xk sont dites mutuellement
indépendantes sous la probabilité P, si pour toutes les réunions dénombrables
d’intervalles A1, . . . , Ak de R,

(9.6) P(X1 ∈ A1, . . . , Xk ∈ Ak) = P(X1 ∈ A1) · · ·P(Xk ∈ Ak).

On omettra en général de rappeler que des variables qui sont indépendantes le sont
sous P. Mais il convient de garder à l’esprit que l’indépendance n’est pas une propriété
qui ne concerne que les variables aléatoires, mais en fait leur lien sous une probabilité P

donnée.
Revenons maintenant à l’Exemple 9.1. Puisque (X = 0, Y = 0) = {p}×{1, 2, . . . , 6},

nous avons P(X = 0, Y = 0) = 4/12. D’autre part P(X = 0) = 1/2 et P(Y = 0) = 4/12,
de sorte que P(X = 0, Y = 0) 6= P(X = 0)P(Y = 0). On retrouve le fait que X et Y ne
sont pas indépendantes. En effet, il suffit pour cela que (9.5) soit invalidé pour un couple
A,B.

Nous aurons besoin par la suite du résultat préliminaire suivant.

Lemme 9.7. Pour que des variables aléatoires X1, . . . , Xk soient mutuellement in-
dépendantes sous la probabilité P, il suffit que (9.6) soit satisfait pour des intervalles
A1, . . . , Ak de R.
On peut même choisir ces intervalles de la forme Ai =]−∞, ai] avec ai ∈ R, 1 ≤ i ≤ k.

On admet ce lemme dont la preuve est une jonglerie abstraite au sujet de la notion
de tribu.

9.2. Propriétés élémentaires

Nous revisitons ici la Proposition 6.5 et sa preuve. Nous commençons par remarquer
que des fonctions de variables indépendantes restent des variables indépendantes.

Proposition 9.8. Soient X et Y des variables indépendantes ainsi que deux fonc-
tions ϕ, ψ : R→ R suffisamment régulières (continues par morceaux, par exemple) pour
que S = ϕ(X) et T = ψ(Y ) soient des variables aléatoires. Alors S et T sont des variables
indépendantes.

Démonstration. Soient C etD deux intervalles de R.On a pris ϕ et ψ suffisamment
régulières pour que ϕ−1(C) ⊂ R et ψ−1(D) ⊂ R puissent être approchés par des réunions
finies d’intervalles disjoints. À savoir que (nous devons l’admettre au niveau de ce cours,
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mais ce qui suit est très naturel) :

P(S ∈ C) = P(X ∈ ϕ−1(C)) = lim
K→∞

P(X ∈ ⊔k≤KIKk ),

P(T ∈ D) = P(Y ∈ ψ−1(D)) = lim
L→∞

P(Y ∈ ⊔l≤LJLl ),

P(S ∈ C, T ∈ D) = lim
K,L→∞

P(X ∈ ⊔k≤KIKk , Y ∈ ⊔l≤LJLl ).

On a donc

P(S ∈ C, T ∈ D) = lim
K,L→∞

P(X ∈ ⊔k≤KIKk , Y ∈ ⊔l≤LJLl )

(a)
= lim

K,L→∞

∑

k≤K,l≤L
P(X ∈ IKk , Y ∈ JLl )

(b)
= lim

K,L→∞

∑

k≤K,l≤L
P(X ∈ IKk )P(Y ∈ JLl )

= lim
K→∞

∑

k≤K
P(X ∈ IKk ) lim

L→∞

∑

l≤L
P(Y ∈ JLl )

= P(S ∈ C)P(T ∈ D).

L’égalité (a) est satisfaite car les intervalles sont disjoints et l’égalité (b) est vérifiée grâce
à l’indépendance de X et Y. Ce qui prouve l’indépendance sous P de S et T. �

Proposition 9.9. Soient X1, . . . , Xm+n des variables mutuellement indépendantes
ainsi que ϕ : Rm → R et ψ : Rn → R deux fonctions suffisamment régulières (continues
par morceaux, par exemple) pour que S = ϕ(X1, . . . , Xm) et T = ψ(Xm+1, . . . , Xm+n)
soient des variables aléatoires. Alors S et T sont indépendantes.

Démonstration. La preuve de cette proposition est analogue à celle de la proposi-
tion précédente, en un peu plus technique. Les intervalles IKk et JLl doivent être remplacés
par des produits cartésiens d’intervalles. Nous omettons les détails. �

On rappelle maintenant le contenu des Propositions 6.16, 6.24 et 6.37.

Proposition 9.10. Soient X et Y deux variables indépendantes, discrètes ou conti-
nues.

(1) Alors pour toutes fonctions ϕ et ψ telles que E|ϕ(X)| < ∞ et E|ψ(Y )| < ∞,
nous avons E|ϕ(X)ψ(Y )| <∞ et E[ϕ(X)ψ(Y )] = E[ϕ(X)]E[ψ(Y )].

(2) Si E|X|2 <∞ et E|Y |2 <∞ alors Cov(X,Y ) = 0.

Proposition 9.11. Soient X1, . . . , Xm+n des variables mutuellement indépendantes
ainsi que ϕ : Rm → R et ψ : Rn → R deux fonctions telles que E|ϕ(X1, . . . , Xm)| < ∞
et E|ψ(Xm+1, . . . , Xm+n)| <∞. Alors, E(|ϕ(X1, . . . , Xm)||ψ(Xm+1, . . . , Xm+n)|) <∞ et

E[ϕ(X1, . . . , Xm)ψ(Xm+1, . . . , Xm+n)] = Eϕ(X1, . . . , Xm) Eψ(Xm+1, . . . , Xm+n).

Démonstration. C’est une conséquence directe des Propositions 9.9 et 9.10. �

Proposition 9.12. Soient X et Y deux variables aléatoires indépendantes telles que
E|X|2 <∞ et E|Y |2 <∞. Alors, Var(X + Y ) = Var(X) + Var(Y ).
De façon plus générale, si X1, . . . , Xn sont des variables aléatoires mutuellement indé-
pendantes telles que E|Xi|2 < ∞ pour tout 1 ≤ i ≤ n, alors Var(X1 + · · · + Xn) =
Var(X1) + · · ·+ Var(Xn).



9.3. ÉCHANTILLONS 73

Démonstration. Il suffit de prouver la première partie car la seconde s’en déduit
aisément. Puisque X et Y sont indépendantes, X̃ := X − EX et Ỹ := Y − EY sont
indépendantes par la Proposition 9.9. On a donc

Var(X + Y ) = E(X̃ + Ỹ )2

= E(X̃)2 + 2E(X̃Ỹ ) + E(Ỹ )2

(a)
= E(X̃)2 + 2E(X̃)E(Ỹ ) + E(Ỹ )2

(b)
= E(X̃)2 + E(Ỹ )2

= Var(X) + Var(Y )

où nous avons invoqué l’indépendance de X̃ et Ỹ à l’égalité (a) et E(X̃) = E(Ỹ ) = 0 à
l’égalité (b). �

9.3. Échantillons

On se donne une loi de variable aléatoire déterminée par la fonction de répartition F
ainsi que X une variable aléatoire suivant cette loi.

Définitions 9.13.

(1) On appelle copie de X toute variable aléatoire X ′ ayant la même loi que X,

c’est-à-dire telle que X
L
= X ′.

(2) On dit d’une suite finie (X1, . . . , Xn) qu’elle est indépendante pour signifier que
X1, . . . , Xn sont mutuellement indépendantes.

(3) On dit d’une suite infinie (Xi)i≥1 qu’elle est indépendante pour signifier que
pour tout n ≥ 2, la suite finie (X1, . . . , Xn) est indépendante.

Définitions 9.14.

(1) On dit d’une suite finie (X1, . . . , Xn) qu’elle est un n-échantillon de (la loi de)
X si c’est une suite indépendante de copies de X.

(2) On dit d’une suite infinie (Xi)i≥1 qu’elle est un échantillon de (la loi de) X si
pour tout n ≥ 2, (X1, . . . , Xn) est un n-échantillon de X.

(3) On appelle moyenne empirique de (X1, . . . , Xn) la variable aléatoire

Xn :=
1

n

n∑

i=1

Xi.

Proposition 9.15. Soit (Xi)i≥1 un échantillon de la variable X telle que E|X|2 <∞.
Nous avons pour tout n,

EXn = EX et VarXn =
VarX

n
.

Démonstration. Par linéarité de l’espérance,

EXn =
1

n

n∑

i=1

EXi =
1

n
nEX = EX.
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D’autre part, avec les Propositions 3.32 et 9.12, nous voyons que

VarXn =
1

n2
Var

(
n∑

i=1

Xi

)
=

1

n2

n∑

i=1

VarXi =
n

n2
VarX =

VarX

n
.

Ce qui achève la preuve. �

Bien que simple, le lemme suivant a des conséquences importantes en théorie des
probabilités.

Lemme 9.16.

(1) Soit Y une variable aléatoire positive. Alors, pour tout a > 0,

P(Y ≥ a) ≤ EY

a
.

(2) Soit X une variable aléatoire de variance σ2 finie. On note µ = EX. Pour tout
δ > 0,

P(|X − µ| > δ) ≤ σ2/δ2.

Démonstration. • Preuve de (1). Du fait que Y ≥ 0, nous avons a1{Y≥a} ≤ Y. En
en prenant l’espérance, nous obtenons E[a1{Y≥a}] ≤ EY, c’est-à-dire aP(Y ≥ a) ≤ EY,
qui est le résultat annoncé.

• Preuve de (2). Puisque P(|X−µ| > δ) = P(|X−µ|2 > δ2), c’est une application directe
de (1) avec Y = |X − µ|2, de sorte que EY = σ2 et a = δ2. �

Théorème 9.17 (Loi faible des grands nombres). Soit (Xi)i≥1 un échantillon de la
variable X de variance σ2 finie. On note µ = EX. Pour tout δ > 0 et tout n ≥ 1,

P(|Xn − µ| > δ) ≤ σ2

nδ2
.

En particulier, pour tout δ > 0,

(9.18) P(|Xn − µ| > δ) →
n→∞

0.

Démonstration. L’inégalité est une conséquence immédiate de la Proposition 9.15
et du Lemme 9.16. La limite s’en déduit. �

En passant au complémentaire, on voit que (9.18) équivaut à

P(|Xn − µ| ≤ δ) →
n→∞

1, ∀δ > 0.

Puisque δ > 0 peut être choisi arbitrairement petit, ceci nous dit que lorsque n tend vers
l’infini, la moyenne empirique Xn, qui est une variable aléatoire, tend vers la moyenne
théorique µ = EX, qui est un nombre non-aléatoire. Ce résultat théorique est fondamen-
tal, on l’appelle la loi des grands nombres.

Il permet entre autre, sur la base de l’observation d’un grand échantillon de X d’es-
timer la moyenne théorique µ = EX que l’on suppose inconnue à l’aide de la moyenne
empirique observée Xn(ω). C’est le principe de l’inférence en statistique mathématique.

En fait, l’observation d’un grand échantillon de X permet aussi d’estimer la loi de X
et à la limite, l’observation d’un échantillon infini de X permettrait (en théorie, bien sûr)
de reconstruire des approximations arbitrairement fines de la loi de X. C’est ce qu’énonce
le résultat suivant.
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Théorème 9.19. Soit (Xi)i≥1 un échantillon de la variable aléatoire X sans aucune
hypothèse supplémentaire (pas besoin de variance finie, ni même de E|X| <∞). Consi-
dérons K intervalles I(1), . . . , I(K), par exemple une partition dont la réunion recouvre
les valeurs possibles de X. On note pour tout 1 ≤ k ≤ K et tout n ≥ 1,

p̂(k)
n = Y

(k)

n =
#{1 ≤ i ≤ n;Xi ∈ I(k)}

n

la proportion observée de valeurs de l’échantillon "tombées" dans I(k). Nous avons la loi
des grands nombres suivante :

P

(
max

1≤k≤K
|p̂(k)
n − P(X ∈ I(k))| ≤ δ

)
→
n→∞

1, ∀δ > 0.

Démonstration. On note pour tout 1 ≤ k ≤ K et tout i ≥ 1,

Y
(k)
i = 1I(k)(Xi) =

{
1 si Xi ∈ I(k)

0 sinon
.

À k fixé, la suite (Y
(k)
i )i≥1 est un échantillon de la variable Y (k) qui suit la loi de Bernoulli

B(p(k)) avec p(k) = P(X ∈ I(k)) = E(Y (k)). D’autre part, p̂(k)
n = Y

(k)

n est la moyenne
empirique des Y (k)

i , elle obéit donc à la loi des grands nombres énoncée au Théorème
9.17. Par conséquent, pour tout k,

P(|p̂(k)
n − P(X ∈ I(k))| > δ) →

n→∞
0, ∀δ > 0.

Or,
(
max1≤k≤K |p̂(k)

n − P(X ∈ I(k))| > δ
)

= ∪1≤k≤K

(
|p̂(k)
n − P(X ∈ I(k))| > δ

)
. Donc,

P

(
max

1≤k≤K
|p̂(k)
n − P(X ∈ I(k))| > δ

)
≤

∑

1≤k≤K
P
(
|p̂(k)
n − P(X ∈ I(k))| > δ

)

→
n→∞

0.

Ce qui achève la preuve de la proposition. �

Les Théorèmes 9.17 et 9.19 qui sont des lois faibles des grands nombres, admettent
une amélioration dont la preuve dépasse le niveau de ce cours. Il s’agit de la loi forte des
grands nombres.

Théorème 9.20 (Loi forte des grands nombres). Soit (Xi)i≥1 un échantillon de la
variable aléatoire X telle que E|X| < ∞. Alors il existe une partie N ∈ A telle que
P(N) = 0 (dite P-négligeable) telle que

lim
n→∞

X
n
(ω) = EX, pour tout ω ∈ Ω \N.

En particulier, sans supposer que E|X| <∞, en notant pour tout n ≥ 1,

p̂n(ω) =
#{1 ≤ i ≤ n;Xi(ω) ∈ I}

n
la proportion observée de valeurs de l’échantillon "tombées" dans un intervalle donné I,
il existe un ensemble P-négligeable N tel que

lim
n→∞

p̂n(ω) = P(X ∈ I), pour tout ω ∈ Ω \N.





CHAPITRE 10

Construction d’une variable aléatoire réelle générale

Donnons-nous une fonction F candidate à être une fonction de répartition, c’est-à-
dire qui satisfait les conditions (1), (2) et (4) de la Proposition 2.8. Nous allons décrire
un espace probabilisé (Ω,A,P) et construire explicitement une variable aléatoire dont
la fonction de répartition est effectivement F. Nous commençons par le cas particulier
d’une répartition uniforme sur [0, 1].

10.1. Construction d’une variable aléatoire continue uniforme

Soit X une variable aléatoire uniforme sur l’ensemble des chiffres : {0, 1, . . . , 9}.
Construisons un échantillon (Xn)n≥1 de X, c’est-à-dire une suite (Xn)n≥1 de copies in-
dépendantes de X. Pour cela, on prend pour Ω l’ensemble des suites ω = (ω1, ω2, . . . ) à
valeurs dans {0, 1, . . . , 9} et on définit

Xn(ω) = ωn ∈ {0, 1, . . . , 9}, ω ∈ Ω, n ≥ 1

qui représente le résultat du n-ième tirage. On prend pour A la plus petite tribu qui
contient toutes les parties de Ω de la forme

n⋂

i=1

{Xi ∈ Ai}, n ≥ 1, Ai ⊂ {0, . . . , 9}, 1 ≤ i ≤ n

et on choisit une mesure de probabilité P qui satisfait

P

(
n⋂

i=1

{Xi ∈ Ai}
)

=
n∏

i=1

#(Ai)

10
, ∀n ≥ 1, A1, . . . , An ⊂ {0, . . . , 9}.

Cette situation est celle de l’équiprobabilité des événements élémentaires, puisqu’il y a∏n
i=1 #(Ai) nombres parmi les 10n nombres entiers de [0, 10n − 1] dont le i-ème chiffre

est dans Ai pour tout 1 ≤ i ≤ n.
On admet qu’une telle mesure de probabilité sur (Ω,A) existe et est unique.

Pour tout n ≥ 1, on définit la variable aléatoire

Un(ω) = 0, ω1 . . . ωn (développement décimal)

=
n∑

i=1

ωi10−i

Il est clair que Un peut prendre 10n valeurs dans [0, 1[. Calculons sa fonction de réparti-
tion. Bien sûr, FUn(u) = 0, si u < 0 et FUn(u) = 1 si u ≥ 1. Soit maintenant 0 ≤ u < 1.

77
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En notant u = 0, x1x2 . . . son développement décimal,

FUn(u) = P(Un ≤ u)

= P

(
{ω ∈ Ω; 0, ω1 . . . ωn ≤ 0, x1 . . . xnxn+1 . . .}

)

= P

(
{X1 ≤ x1 − 1} ⊔ [{X1 = x1} ∩ {X2 ≤ x2 − 1}] ⊔ · · ·
⊔[{X1 = x1} ∩ · · · ∩ {Xn−1 = xn−1} ∩ {Xn ≤ xn − 1}]

⊔[{X1 = x1} ∩ · · · ∩ {Xn = xn}]
)

= 10−1x1 + 10−2x2 + · · ·+ 10−nxn + 10−n

= 0, x1x2 . . . xn + 10−n.

u0

1

FUFUn

10−n

1

Par conséquent, lim
n→∞

FUn(u) = G(u) :=





0 si u ≤ 0
u si 0 ≤ u ≤ 1
1 si u ≥ 1

, ∀u ∈ R. Posons

(10.1) U(ω) = lim
n→∞

Un(ω) = 0, ω1ω2 . . . , ω ∈ Ω.

Puisque supω∈Ω |Un(ω) − U(ω)| ≤ 10−n, pour tout ε > 0 et tout entier n suffisamment
grand pour que 10−n ≤ ε, nous avons : {Un ≤ u− ε} ⊂ {U ≤ u} ⊂ {Un ≤ u+ ε}. D’où
il vient que FUn(u − ε) ≤ FU(u) ≤ FUn(u + ε). Ce qui en faisant tendre n vers l’infini
nous donne G(u− ε) ≤ FU(u) ≤ G(u+ ε), puis en faisant tendre ε vers zéro, nous donne
FU = G. Soit

FU(u) =





0 si u ≤ 0
u si 0 ≤ u ≤ 1
1 si u ≥ 1

, u ∈ R.

La loi de U, spécifiée par sa fonction de répartition FU , est appelée loi uniforme sur [0, 1].
Sa fonction de densité est donnée par

fU(u) =

{
1 si u ∈ [0, 1]
0 sinon

, u ∈ R.

On vient de construire U à l’aide d’une infinité dénombrable de tirages indépendants
uniformes dans {0, . . . , 9}.

Remarque 10.2. Lors de la preuve de la Proposition A.8, on montre que le procédé
de construction (10.1) atteint tous les réels de [0, 1] une seule fois à l’exception de certains
qui sont atteints deux fois : les éléments de D, l’ensembles des nombres dans [0, 1] qui
admettent un développement décimal fini. Or, il est aussi prouvé que D est dénombrable
de sorte que P(U ∈ D) =

∑
x∈D

P(U = x) =
∑

x∈D
0 = 0 où l’avant-dernière égalité vient

de P(U = x) = 0 pour tout x et la dernière a du sens car D étant dénombrable,
∑

x∈D

est une série numérique.
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10.2. Construction d’une variable aléatoire réelle générale

La variable aléatoire U va nous permettre de construire toutes les autres variables
aléatoires sur (Ω,A,P). Le procédé de construction est le suivant.

Théorème 10.3. Soit une fonction F : R → [0, 1], croissante et continue à gauche
telle que limx→−∞ F (x) = 0 et limx→∞ F (x) = 1. On définit son inverse sur ]0, 1[ par

(10.4) F−1(u) := inf{x ∈ R; F (x) ≥ u}, u ∈]0, 1[.

On considère U ∼ U(0, 1) une variable aléatoire sur (Ω,A,P) de loi uniforme sur ]0, 1[.
Alors

(10.5) X = F−1(U)

est une variable aléatoire sur (Ω,A,P) de fonction de répartition F.

0

1

1

F

F−1

Preuve du Théorème 10.3. Rappelons que pour tout 0 ≤ u ≤ 1, FU(u) = P(U ≤
u) = P(U < u) = u.

Si x est un point de continuité de F, alors F−1(u) ≤ x⇐⇒ u ≤ F (x), de sorte que

FX(x) = P(X ≤ x) = P(F−1(U) ≤ x) = P(U ≤ F (x))

= FU(F (x)) = F (x)

On note F (x+) et F (x−) les limites à droite et à gauche de F en x (ces limites existent
puisque F est supposée croissante). Si x est un point de discontinuité de F, alors F (x−) <
F (x) = F (x+), F−1(u) < x ⇐⇒ u < F (x−) et F−1(u) = x ⇐⇒ F (x−) ≤ u ≤ F (x).
Donc,

FX(x) = P(F−1(U) < x) + P(F−1(U) = x)

= P(U < F (x−)) + P(F (x−) ≤ U ≤ F (x))

= F (x−) + [F (x)− F (x−)] = F (x).

Ce qui achève la preuve de FX = F et donc de la proposition. �

Remarquons que nous avons déjà montré à la Proposition 2.8 que toute fonction de
répartition jouit des propriétés imposées à F dans le Théorème 10.3. Nous en déduisons
le résultat suivant.
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Corollaire 10.6. Une fonction F est la fonction de répartition d’une variable aléa-
toire si et seulement si F : R → [0, 1] est croissante, continue à gauche et satisfait
limx→−∞ F (x) = 0 et limx→∞ F (x) = 1.

Exemples 10.7.

(a) Loi de Bernoulli B(p). Nous avons F (x) = q1[0,1[(x) + p1[1,∞[(x) avec p+ q = 1, dont
l’inverse est F−1(u) = 1]q,1](u), 0 ≤ u ≤ 1.

Par conséquent X =

{
0 si U ∈ [0, q]
1 si U ∈]q, 1]

suit la loi B(p). On remarque que la longueur

de [0, q] est q = P(X = 0) et que celle de ]q, 1] est 1− q = p = P(X = 1).

(b) Loi exponentielle E(λ). Nous avons F (x) = 1{x≥0}(1− e−λx) de sorte que F−1(u) =
− ln(1 − u)/λ, u ∈ [0, 1[. On voit donc que X = − ln(1 − U)/λ suit la loi E(λ). Or

U
L
= 1− U, donc X = − ln(U)/λ ∼ E(λ).

Attention, dans (10.5) F−1 n’est pas l’inverse traditionnel de F mais seulement son
inverse généralisé. En particulier il n’est pas vrai en général que F (X) = U, c’est-à-dire
que F (X) soit une variable aléatoire uniforme sur (0, 1).

Exercice 10.8.

(a) Soit X ∼ B(2, 1/2) la variable aléatoire de l’Exemple 2.1, montrer que F (X) n’est
pas uniforme sur (0, 1).
Calculer sa loi.

(b) Soit X une variable aléatoire continue de fonction de répartiton F, montrer que F (X)
est uniforme sur (0, 1).

Solution. • Solution de (a). Puisque #(X(Ω)) = #({0, 1, 2}) = 3 et #(U(Ω)) =
#([0, 1]) =∞, #(F (X(Ω))) ≤ 3 donc F (X) ne peut pas avoir la même loi que U.
Plus précisément, PX = 1

4
δF (0) + 1

2
δF (1) + 1

4
δF (2) = 1

4
δ1/4 + 1

2
δ3/4 + 1

4
δ1.

• Solution de (b). Au début de la preuve du Théorème 10.3, nous avons vu que si x est
un point de continuité de F, alors pour tout 0 ≤ u ≤ 1, F−1(u) ≤ x⇐⇒ u ≤ F (x). Or,
sous notre hypothèse, F est continue partout, donc pour tout 0 ≤ u ≤ 1,

P(F (X) ≥ u) = P(X ≥ F−1(u))
(a)
= P(X > F−1(u))
(b)
= 1− F (F−1(u))
(c)
= 1− u

où l’égalité (a) est vraie car X est une variable continue, (b) vient de la définition de la
fonction de répartition F et (c) se vérifie comme suit.
Pour tout 0 ≤ u ≤ 1, F (F−1(u)) = F (inf{x;F (x) ≥ u}) = limx→α− F (x) := F (α−) où
α est l’unique nombre tel que F (α−) ≤ u ≤ F (α). Or F est supposée continue, donc
F (α−) = F (α), ce qui implique que F (α−) = u et F (F−1(u)) = u.
On en déduit que P(F (X) ≤ u) = 1 − limv→u−(1 − v) = 1 − (1 − u) = u pour tout
0 ≤ u ≤ 1, ce qui montre que F (X) suit une loi uniforme sur (0, 1). �



CHAPITRE 11

Simulation d’une variable aléatoire

Il existe des algorithmes qui génèrent des suites de tirages pseudo-aléatoires indépen-
dants de loi U(0, 1) uniforme sur [0, 1]. La plupart des calculettes permettent d’exécuter
de tels programmes, souvent baptisés rand1. En général leur conception repose sur des
propriétés arithmétiques de certaines suites récurrentes. Ces algorithmes sont détermi-
nistes, c’est-à-dire qu’il n’ont rien d’aléatoire. Si vous utilisez le même algorithme avec la
même donnée initiale, il vous donnera toujours la même suite de nombres. De plus, ces
suites de tirages de valeurs numériques sont périodiques, mais avec une période extrême-
ment grande. C’est la raison pour laquelle ces générateurs sont appelés pseudo-aléatoires
plutôt qu’aléatoires.

11.1. Description rapide de certains générateurs

Une famille de générateurs populaire est celle des générateurs congruentiels linéaires.
Ils génèrent des suites de nombres entiers (xn)n≥1 dans l’ensemble {0, . . . ,m− 1} où m
est un grand nombre. Il suffit ensuite de prendre un = xn/m pour obtenir une suite de
tirages (un)n≥1 dans [0, 1[ dont les valeurs sont des nombres arrondis avec une précision
de l’ordre de 1/m. La suite (xn)n≥1 est solution de l’équation de récurrence

xn+1 = axn + b modulo m, n ≥ 0

en partant d’une donnée initiale entière x0. On rappelle que x = r modulo m signifie
que r est le reste de la division euclidienne (celle de la petite école) de x par m. En
d’autres termes x = qm + r avec un quotient q entier et 0 ≤ r ≤ m − 1. On constate
immédiatement qu’une telle suite est périodique (de période au plus m). Il faut donc que
m soit très grand. En choisissant intelligemment a et b, cette période est effectivement
m. D’autre part il faut aussi choisir adéquatement les nombres a, b et m pour que la
suite simule correctement de très longues séquences (de l’ordre de m/10) de tirages
uniformes et indépendants. En fait, le choix de ces paramètres est loin d’être évident et
est encore l’objet de recherche. La fonction rand de Scilab utilise les valeurs m = 231,
a = 843314861 et b = 453816693. La fonction grand de Scilab est basée sur un type
de générateur déterministe plus performant dont la période 219937 − 1 est fabuleuse. La
plupart des générateurs utilise la date et l’heure de votre ordinateur pour décider de la
valeur initiale x0.

11.2. Simulation. Principe et applications

Nous appellerons U le résultat d’un tirage de loi U(0, 1). Puisque les ordinateurs
ont une précision finie, les valeurs un que nous fournit notre générateur sont des tirages

1En anglais, au hasard se dit at random qui vient de l’ancienne expression française "aller à randon"
qui signifie avancer de façon désordonnée et que l’on retrouve dans randonnée.

81



82 11. SIMULATION D’UNE VARIABLE ALÉATOIRE

uniformes sur un ensemble de grand cardinal et nous utilisons en fait une approximation
Um de la variable U dans le même esprit que (10.1).

Principe général de la simulation. Ce principe est une application directe du
Théorème 10.3. Soit U1, U2, . . . un échantillon de la loi uniforme U(0, 1). Alors, grâce
au Théorème 10.3, on sait que, F−1 désignant l’inverse généralisé de la fonction de
répartition F de la loi de X, voir (10.4),

Xi := F−1(Ui), i ≥ 1

définit un échantillon de la loi de X. C’est-à-dire une famille de copies indépendantes de
X. Ce principe s’applique donc lorsqu’on connaît une expression de F−1.

Variables discrètes. Dans le cas d’une variable discrète, le principe précédent cor-
respond à une manipulation intuitivement claire que nous allons décrire. La méthode est
simple.
La variable discrète X que nous souhaitons simuler prend ses valeurs dans {xk; k ∈ K}
avec K ⊂ {1, 2, . . .}. Sa loi s’écrit

∑
k∈K pkδxk

. On suppose sans perte de généralité que
pk > 0 pout tout k.
On partitionne l’intervalle ]0, 1] de sorte que

]0, 1] =
⊔

k∈K
]uk−1, uk]

| | | | | |

p1 p2

∑
k∈K pk = 1

0 1u1 u2

| |

pk

uk−1 uk

avec u0 = 0 et uk =
∑

1≤i≤k pi, k ∈ K. La probabilité que la variable U de loi uniforme
sur (0, 1) tombe dans k-ième boîte Bk =]uk−1, uk] est

P(U ∈ Bk) = P(uk−1 < U ≤ uk) = uk − uk−1 = pk, k ∈ K.
La variable

(11.1) X =
∑

k∈K
xk1{U∈Bk}

qui vaut xk si et seulement si U ∈ Bk, k ∈ K a pour loi
∑

k∈K pkδxk
.

Exercice 11.2. Montrer que la variable X définie par (11.1) satisfait l’égalité (10.5) :
X = F−1(U), du Théorème 10.3.

Exemples 11.3.

(a) Pour simuler un tirage du jeu de pile ou face il suffit de décider pile si U ∈ [0, 1/2[ et
face si U ∈ [1/2, 1[.

(b) Pour simuler la variable aléatoire X de l’Exemple 2.6, on décide par exemple :
X(ω) = 0 si U(ω) ∈ [0, 1/4[, X(ω) = 1 si U(ω) ∈ [1/4, 3/4[, X(ω) = 2 si U(ω) ∈
[3/4, 1[.
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Ou bien,X(ω) = 0 si U(ω) ∈ [0, 1/8[∪[3/4, 7/8[, X(ω) = 1 si U(ω) ∈ [1/8, 1/2[∪[7/8, 1[,
X(ω) = 2 si U(ω) ∈ [1/2, 3/4[. Mais c’est moins pratique.

(c) Pour simuler le premier instant X d’apparition de pile lors d’une suite de lancers
indépendants d’une pièce que nous avons rencontré à l’Exemple 2.12-(b), on peut
inverser la fonction de répartition : X(ω) = 0 si U(ω) ∈ [0, 1/2[, X(ω) = 1 si
U(ω) ∈ [1/2, 3/4[, X(ω) = 2 si U(ω) ∈ [3/4, 7/8[, . . .
Ou bien on peut décomposer U(ω) en base 2 et choisir pour X(ω) la place de la
première apparition de 1 dans cette décomposition.

Variables exponentielles et variables de Poisson. Nous avons vu à l’Exemple
10.7-(b) que

(11.4) T = − ln(U)/λ

suit une loi exponentielle E(λ) lorsque U est une variable uniforme sur [0, 1]. Or le
générateur rand produit des réalisations indépendantes U1, U2, . . . de variables de loi
U(0, 1) uniforme sur [0, 1]. Par conséquent (Ti)i≥1, où Ti = − ln(Ui)/λ, est une suite de
variables indépendantes de loi E(λ). La suite croissante (Sn)n≥1 définie par

Sn =
n∑

i=1

Ti

décrit ce qu’on appelle un processus de Poisson de paramètre λ. Les Sn sont les instants
de réalisations de certains événements alors que les Ti sont les temps d’attente entre deux
événements consécutifs.
Par exemple, les instants de désintégration d’un corps constitué d’un élément radioactif
de composition pure sont très bien décrits par une telle suite aléatoire. Le paramètre de
fréquence λ est alors proportionnel à la masse du corps et inversement proportionnel à
la période de demi-vie de l’élément.

Soit N le nombre d’occurences d’événement pendant l’intervalle de temps [0, 1]. En
d’autres termes, N est spécifié par :

(11.5) SN ≤ 1 < SN+1.

On peut montrer que N est une variable aléatoire de Poisson de paramètre λ. De façon
plus générale, le nombre d’événements pendant un intervalle de temps [s, t] est une
variable de Poisson de paramètre (t−s)λ. Cette propriété permet de simuler une variable
N de Poisson P(λ). En effet, (11.5) équivaut à

N+1∏

i=1

Ui < e−λ ≤
N∏

i=1

Ui.

De sorte que N + 1 est le nombre de fois qu’il faut multiplier entre eux des Ui ∼ U(0, 1)
indépendants, pour passer pour la première fois en dessous de e−λ.
Cette méthode de simulation d’une variable de Poisson est plus performante que celle
basée sur le principe général que nous avons présentée à la Section 11.2.

Variables normales. On appelle couple aléatoire normal standard un couple (X,Y )
de variables aléatoires indépendantes normales standard X,Y ∼ N (0, 1). L’application
directe du Théorème 10.3 est compromise par le fait qu’il n’existe pas d’expression ana-
lytique de la fonction de répartition de N (0, 1). A fortiori, nous n’avons pas d’expression
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explicite de sa fonction réciproque. Nous allons toutefois contourner ce problème en ré-
solvant l’exercice suivant.

Exercice 11.6. Soit (X,Y ) un couple normal standard. On définit (R,Θ) comme
étant les coordonnées polaires de (X,Y ), c’est-à-dire

{
X = R cos Θ
Y = R sin Θ

avec R ≥ 0 et 0 ≤ Θ < 2π.

R0

(X,Y )

Θ

Montrer que R et Θ sont des variables indépendantes telles que R2 ∼ E(1/2) et Θ ∼
U(0, 2π).

Solution. La densité de la loi de (X,Y ) est fX,Y (x, y) = 1
2π
e−(x2+y2)/2 et notons

g(r, θ) celle de (R,Θ), si elle existe. Soit T la transformation inverse de (r, θ) 7→ (x, y) =
(r cos θ, r sin θ) de sorte que (R,Θ) = T (X,Y ).
On se donne ϕ une fonction bornée régulière quelconque sur [0,∞[×[0, 2π[. Nous avons

Eϕ(R,Θ) = Eϕ(T (X,Y ))

=

∫∫

R2

ϕ(T (x, y))
1

2π
e−(x2+y2)/2 dxdy

=

∫∫

[0,∞[×[0,2π[

ϕ(r, θ)
1

2π
e−r

2/2 rdrdθ

=

∫∫

R2

ϕ(r, θ)g(r, θ) drdθ

avec g(r, θ) = gΘ(θ)gR(r) où gΘ(θ) = 1
2π

1[0,2π[(θ) et gR(r) = 1[0,∞[(r)re
−r2/2, en effectuant

un changement de variables en coordonnées polaires à l’avant-dernière égalité. Puisque
g a la forme produit, R et Θ sont indépendantes de densité gR et gΘ. Les variables
R2 et Θ sont donc aussi indépendantes. Clairement, Θ ∼ U(0, 2π) et pour tout t ≥ 0,

P(R2 ≤ t) = P(R ≤
√
t) =

∫ √
t

0
e−r

2/2 rdr =
∫ t
0
e−s/2 ds/2 en faisant le changement de

variable s = r2. On voit donc que la densité de la loi de S = R2 est 1[0,∞[(s)
1
2
e−s/2,

c’est-à-dire R2 ∼ E(1/2). �

Il suffit maintenant de simuler (R,Θ) à l’aide d’un couple (U, V ) de variables indé-
pendantes distribuées uniformément sur [0, 1] dont la réalisation est donnée par deux
valeurs consécutives du programme rand. On prend alors

{
R =

√
−2 lnU

Θ = 2πV
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où l’on a utilisé (11.4) dans le calcul de R et (4.6) dans celui de Θ. Finalement, nous
venons de montrer que le couple (X,Y ) donné par

{
X =

√
−2 lnU cos(2πV )

Y =
√
−2 lnU sin(2πV )

est un couple normal standard. Bien sûr, avec un échantillon (Ui)i≥1 de U(0, 1),
(√
−2 lnU1 cos(2πU2),

√
−2 lnU1 sin(2πU2),

√
−2 lnU3 cos(2πU4),

√
−2 lnU3 sin(2πU4), . . .

)

forme un échantillon de N (0, 1).
D’autre part, si Z ∼ N (0, 1), on sait que X = m+ σZ suit la loi normale N (m,σ2). On
en déduit que
(
m+ σ

√
−2 lnU1 cos(2πU2),m+ σ

√
−2 lnU1 sin(2πU2),

m+ σ
√
−2 lnU3 cos(2πU4),m+ σ

√
−2 lnU3 sin(2πU4), . . .

)

forme un échantillon de N (m,σ2).

11.3. Histogrammes

Un générateur rand parfait devrait produire une suite de réalisations de variables
aléatoires

(1) de loi U(0, 1)

(2) qui sont mutuellement indépendantes.

Mais qu’est-ce que cela signifie et comment s’en assurer ? En ce qui concerne l’indépen-
dance, le problème est assez délicat et nous ne l’aborderons pas ici. Disons seulement
qu’il existe des tests statistiques d’indépendance et qu’il est recommandé que les géné-
rateurs pseudo-aléatoires passent ces tests avec de faibles erreurs de première et seconde
espèces.
Revenons au premier point, à savoir que la loi du pseudo-échantillon soit bien uniforme.
Puisque nous ne sommes pas en mesure de produire un argument de symétrie comme
lors d’un jeu de pile ou face, notre seule façon de comprendre ce que signifie suivre une
loi donnée (ici, uniforme) est de se référer à une interprétation fréquentielle. À savoir que
si l’on est face à un très grand nombre de réalisations consécutives, ces tirages se laisse-
ront classés avec des proportions observées qui sont proches des proportions théoriques
attendues. Par exemple, si l’on découpe le segment [0, 1] en 100 sous-intervalles de même
longueur et qu’on observe 40 000 de réalisations, on s’attend à ce qu’il y ait à peu près
40 000/100=400 nombres dans chacuns des sous-intervalles, et ce avec des fluctuations
typiques de ce que la théorie des probabilités prévoit, ici de l’ordre de ±20 ; on pense en
particulier au théorème central limite qui quantifie ces fluctuations lorsque la taille n de
l’échantillon est grande.
Dans le sous-intervalle [a, b[ on attend donc une proportion (b − a)/(1 − 0) = b − a de
tirages U(0, 1) lorsque n est grand. C’est ce dont nous assure la loi des grands nombres
et que allons tester en construisant des histogrammes.
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On partitionne un intervalle contenant toutes les valeurs possibles de la variable X
en un nombre fini K de sous-intervalles [ak−1, ak[, 1 ≤ k ≤ K. Les sous-intervalles (ou
classes) sur les bords pouvant éventuellement ne pas être bornés. Par exemple, si X est
une variable binomiale B(m, p), elle prend a priori les valeurs {0, 1, . . . ,m} et on pourra
considérer les classes [−0.5, 0.5[, [0.5, 1.5[, . . . [m − 0.5,m + 0.5] qui encadrent de façon
symétrique les valeurs effectives de X.

On observe un échantillon deX de taille n, c’est-à-dire les réalisations x1 = X1(ω), . . . , xn =
Xn(ω) de la suite de copies indépendantes X1, . . . , Xn de X. On note p̂k la proportion
de xi dans la k-ième classe [ak−1, ak[, soit

p̂k(x1, . . . , xn) =
1

n

n∑

i=1

1{xi∈[ak−1,ak[}, 1 ≤ k ≤ K.

Par définition, l’histogramme des observations est la figure suivante, où ĥk est calculé de
telle sorte que l’aire au-dessus de la k-ième classe soit p̂k.

akak−1 ak+1

p̂k

ĥk

x
0 . . . . . .

Histogramme d’un échantillon

C’est-à-dire

(11.7) ĥk(x1, . . . , xn) =
p̂k(x1, . . . , xn)

ak − ak−1

, 1 ≤ k ≤ K.

Supposons que X soit une variable de densité fX . On sait que

pk := P(X ∈ [ak−1, ak[) =

∫ ak

ak−1

fX(x) dx,

de sorte que pk = (ak − ak−1)hk en posant

(11.8) hk =

∫ ak

ak−1
fX(x) dx

ak − ak−1

, 1 ≤ k ≤ K,

qui n’est autre que la valeur moyenne de fX sur la classe [ak−1, ak[. En traçant le graphe
des hk en fonctions des classes [ak−1, ak[, on obtient l’histogramme théorique suivant.
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akak−1 ak+1

pk

hk

x
0 . . . . . .

fX

Histogramme théorique

La similarité des formules (11.7) et (11.8) justifie le mode de construction des histo-
grammes d’échantillon. En effet, la courbe de l’histogramme théorique h est une simpli-
fication de la courbe de densité fX qui ne retient que l’information d’appartenance aux
classes [ak−1, ak[. D’autre part, avec la loi forte des grands nombres énoncée au Théorème
9.20, on sait que pour tout 1 ≤ k ≤ K, et P-presque toute réalisation ω,

lim
n→∞

ĥk(X1(ω), . . . , Xn(ω)) = hk.

Par conséquent, lorsque n et K sont grands, l’histogramme observé

x 7→ ĥ(X1, . . . , Xn)(x) =
∑

1≤k≤K
ĥk(X1, . . . , Xn)1[ak−1,ak[(x)

est proche de la densité théorique x 7→ fX(x).

On voit donc que si l’on sait que les (Xi)1≤i≤n sont bien des copies indépedantes de
la loi de X, l’histogramme donne une approximation raisonnable de la densité fX lorsque
K et n sont grands.

Les figures suivantes sont les histogrammes à 20 classes équilibrées de 100, 1000,
10 000 et 100 000 tirages uniformes effectués à l’aide du générateur rand de Scilab.
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La ligne horizontale est à l’altitude 1, c’est la densité théorique de U(0, 1). Attention,
les échelles verticales diffèrent d’une figure à l’autre.

Exemple 11.9. Soit la variable aléatoire X à valeurs dans [0, 2] de densité

fX(x) = 1[0,2](x)x/2, x ∈ R.

Sa fonction de répartition vaut FX(x) = x2/4 pour 0 ≤ x ≤ 2 et sa fonction réciproque
est F−1

X (u) = 2
√
u, 0 ≤ u ≤ 1. De ce fait , avec U ∼ U(0, 1), la variable aléatoire 2

√
U

a même loi que X, ce qui s’écrit X
L
= 2
√
U. Les histogrammes suivants de 100, 1000 et

30 000 copies indépendantes de X ont été obtenus avec rand.
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On constate à nouveau que plus n est grand, plus l’histogramme est proche du graphe
de la densité fX , qui est ici représenté par le segment de droite oblique d’équation y =
x/2.
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CHAPITRE 13

Inégalités de convexité

On s’intéresse ici à un lien entre les probabilités et les fonctions convexes. Les notions
de base concernant la convexité sont rappelées à l’Annexe D.

Soient x, y ∈ Rd et 0 ≤ t ≤ 1. La mesure de probabilité sur Rd : (1 − t)δx + tδy est

la loi de Zt =

{
x avec la probabilité (1− t)
y avec la probabilité t

, voir les Remarques 3.7-(2&3) au sujet

des variables discrètes à valeurs dans un espace vectoriel. On a E(Zt) = (1− t)x+ ty, de
sorte que la définition (D.3) de la convexité de la fonction ϕ sur la partie convexe C de
Rd se réécrit

ϕ(EZt) ≤ Eϕ(Zt),

pour tout 0 ≤ t ≤ 1. Cette inégalité est en fait un cas particulier du résultat général
énoncé plus bas en (13.4).

Lemme 13.1 (Variable discrète). Soit X une variable aléatoire discrète à valeurs
dans une partie convexe C de Rd telle que E‖X‖ < ∞. Si de plus l’une des propriétés
suivantes est satisfaite

– C est un ouvert
– C est un fermé
– X prend un nombre fini de valeurs

alors, EX ∈ C.
Démonstration. Si X prend un nombre fini de valeurs, EX =

∑
n∈N pnxn est une

combinaison linéaire finie et on montre par récurrence à l’aide de la définition (D.2) que∑
n∈N pnxn ∈ C. Par exemple avec N = {1, 2, 3},

p1x1 + p2x2 + p3x3 = p1x1 + (p2 + p3)

[
p2

p2 + p3

x2 +
p3

p2 + p3

x3

]

︸ ︷︷ ︸
∈C︸ ︷︷ ︸

∈C

et ainsi de suite pour un nombre fini de valeurs. Lorsque N = {1, 2, . . .} est infini,
nous avons en posant πm =

∑m
n=1 pn, EX =

∑
n≥1 pnxn =

∑m
n=1 pnxn +

∑
n>m pnxn =

πm
∑m

n=1
pn

πm
xn+

∑
n>m pnxn. Or,

∑m
n=1

pn

πm
xn ∈ C puisque

∑m
n=1

pn

πm
= 1, limm→∞ πm = 1

et limm→∞
∑

n>m pnxn = 0. Donc, EX appartient à la fermeture de C dans Rd.
Si C est fermé, nous venons de montrer que EX ∈ C.
Si C est ouvert, il est égal à son intérieur. Donc x1 est dans l’intérieur de C. On en

déduit que EX = p1x1 +
∑

n>1 pnxn est dans l’intérieur de C; donc dans C. �

Exercice 13.2. Justifier les dernières lignes de la preuve précédente.

Proposition 13.3 (Inégalité de Jensen). Soient ϕ : C → R une fonction convexe
différentiable sur la partie ouverte convexe C de Rd et X une variable aléatoire à valeurs
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dans C telle que E|ϕ(X)| <∞ et E‖X‖ <∞. Alors,

(13.4) ϕ(EX) ≤ Eϕ(X).

Démonstration. Du fait des hypothèses E|ϕ(X)| < ∞ et E‖X‖ < ∞ les espé-
rances que nous considérons sont bien définies. Nous avons avec la Proposition D.5 :
ϕ(x) ≥ ϕ(a) + 〈ϕ′(a), x − a〉 pour tous x, a ∈ C. Puisque C est un ensemble convexe,
le Lemme 13.1 nous dit que EX appartient aussi à C. En prenant a = EX dans l’in-
égalité précedente, nous obtenons ϕ(X) ≥ ϕ(EX) + 〈ϕ′(EX), X − EX〉. En prenant
les espérances, la linéarité et la croissance de l’espérance nous assurent de Eϕ(X) ≥
ϕ(EX) + 〈ϕ′(EX),E(X − EX)〉 = ϕ(EX) puisque E(X − EX) = 0. Ce qui achève la
démonstration. �

Remarques 13.5.

(1) Le Lemme 13.1 reste vrai pour toute partie convexe C de Rd. La preuve de
cette extension nécessite une étude des propriétés élémentaires des ensembles
convexes de Rd que nous ne ferons pas ici.

(2) L’inégalité de Jensen reste vraie lorsque la fonction convexe ϕ n’est pas dif-
férentiable et C n’est pas un ouvert. Il suffit pour cela de tenir compte de
la remarque (1) précédente et de remplacer ϕ(x) ≥ ϕ(a) + 〈ϕ′(a), x − a〉 par
ϕ(x) ≥ ϕ(a)+ 〈λ, x−a〉 où α = ϕ(a)+ 〈λ, u−a〉, avec λ ∈ Rd, est l’équation en
(u, α) ∈ Rd ×R d’un hyperplan "tangent" au graphe de ϕ en a. C’est-à-dire un
hyperplan passant par (a, ϕ(a)) et tel que le graphe de ϕ soit entièrement dans
le demi-espace "supérieur" délimité par cet hyperplan.

En dimension 1 avec ϕ(x) = x2, on retrouve E(X2) ≥ (EX)2, c’est-à-dire Var(X) ≥ 0.
Avec ϕ(x) = eax, on obtient ln EeaX ≥ aEX, a ∈ R.

En appliquant l’inégalité de Jensen à la fonction convexe ϕ(x) = ‖x‖p, x ∈ Rd avec
p ≥ 1 (voir l’Exercice D.7), on obtient ‖EX‖p ≤ E[‖X‖p], p ≥ 1. Avec p = 1, nous avons
‖EX‖ ≤ E‖X‖ et en regroupant ces résultats :

‖EX‖ ≤ E‖X‖ ≤ E[‖X‖p]1/p, p ≥ 1.

Corollaire 13.6. Soient 0 < p ≤ q et X une variable aléatoire sur Rd telle que
E[‖X‖q] <∞. Alors,

E[‖X‖p]1/p ≤ E[‖X‖q]1/q.
Démonstration. La fonction ϕ(y) = yq/p, y ≥ 0 est convexe puisque q/p ≥ 1.

Avec Y = ‖X‖p, nous avons ‖X‖q = ϕ(Y ) et avec l’inégalité de Jensen : E[‖X‖p]q/p =
ϕ(EY ) ≤ Eϕ(Y ) = E[‖X‖p×q/p] = E[‖X‖q] qui est le résultat annoncé. �

En particulier, avec 1 = p ≤ q nous retrouvons E‖X‖ ≤ E[‖X‖q]1/q.



ANNEXE A

Dénombrabilité

Un ensemble est dénombrable si on peut le dénombrer, c’est-à-dire coller un numéro
distinct sur chacun de ses éléments. L’ensemble de tous les numéros possibles étant
l’ensemble N des entiers naturels, nous arrivons à la définition abstraite suivante.

Définition A.1. Un ensemble E est dit dénombrable s’il existe une injection de E
dans N.

Remarques A.2.

(1) Appelons ι : E → N une telle injection. Alors son application réciproque ι−1 :
ι(E) → E est une bijection, c’est l’application qui à tout numéro pris dans
ι(E) ⊂ N associe un élément unique de E.

(2) Bien sûr, tout ensemble fini est dénombrable et N est dénombrable.

(3) De même, tout sous-ensemble d’un ensemble dénombrable est dénombrable et
par contraposition, tout ensemble contenant une partie non-dénombrable est
non-dénombrable.

(4) Si deux ensembles sont en bijection, ils sont soit dénombrables tous les deux,
soit non-dénombrables tous les deux.

Exercice A.3. Montrer que Z est dénombrable.

Solution. On numérote les entiers relatifs dans l’ordre suivant :
0, 1,−1, 2,−2, 3, . . . , n,−n, . . . Il s’agit de l’application f : Z → N∗ := {1, 2, . . .} définie
par f(n) = 2n et f(−n) = 2n + 1 pour tout n ≥ 1 et f(0) = 1. Elle est bijective de Z

sur N∗. �

Proposition A.4. Le produit cartésien d’un nombre fini d’ensembles dénombrables
est dénombrable.

Démonstration. Par récurrence, il suffit de montrer ce résultat pour le produit
de deux ensembles dénombrables. Compte tenu de la définition de la dénombrabilité, il
suffit pour cela de montrer que N2 est dénombrable. Le procédé de numérotation de N2

suivant

b b b

b b b

b b b

b

b

b

b

b

b

b

b

b

b

0 1 2 3

1

2

N

N
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94 A. DÉNOMBRABILITÉ

permet de voir que N2 est en bijection avec N. �

L’exercice et la proposition précédents nous permettent de voir que pour tout d ≥ 1,
Zd est dénombrable. On en déduit que l’ensemble des nombres rationnels Q est aussi
dénombrable. En effet, à tout x ∈ Q on associe le couple d’entiers (p, q) ∈ Z × N∗ tels
que x = p/q soit une fraction irréductible. Cette application est clairement une injection
de Q dans Z× N∗ ⊂ Z2 qui est dénombrable.

Proposition A.5. Une réunion dénombrable d’ensembles dénombrables est dénom-
brable.

Démonstration. Soient (Ei)i∈I une collection dénombrable (l’ensemble I des in-
dices est dénombrable) d’ensembles dénombrables. On peut sans perte de généralité
prendre I ⊂ N. D’autre part chacun des Ei est en injection dans N : on peut décrire
Ei = {xij; j ∈ J(i)} avec J(i) ⊂ N. Par conséquent

⋃
i∈I Ei = {xij; (i, j) : i ∈ I, j ∈ J(i)}.

L’application qui à tout x de
⋃
i∈I Ei associe un couple (i, j) tel que xij = x est une

injection de
⋃
i∈I Ei dans {(i, j) : i ∈ I, j ∈ J(i)} ⊂ N2. Puisque, d’après la Proposition

A.4, N2 est dénombrable, il en est de même pour
⋃
i∈I Ei. �

Nous allons voir à la Proposition A.8 plus bas qu’aucun intervalle réel d’intérieur non-
vide n’est dénombrable. Pour cela nous aurons besoin du résultat préliminaire suivant.

Lemme A.6. Soit X un ensemble non vide et 2X l’ensemble de toutes les parties de
X . Il n’existe pas d’injection de 2X dans X .

Démonstration. On fait une preuve par l’absurde. Supposons qu’il existe une in-
jection de 2X dans X . Alors, il existe une partie Y de X et une application P : Y → 2X

qui est bijective. L’application P permet de nommer les parties de X à l’aide des élé-
ments du sous-ensemble Y de X .
Considérons la partie

A = {y ∈ Y ; y 6∈ P (y)}
ainsi que l’élément z = P−1(A) ∈ Y .

– Soit z ∈ A = P (z), mais ceci est impossible par définition de A;
– Soit z 6∈ A = P (z) et par définition de A : z ∈ P (z), ce qui est contradictoire.

Les deux cas sont exclus, par conséquent notre hypothèse de départ est impossible : il
n’existe donc aucune injection de 2X dans X . �

Cette preuve est due à Bertrand Russel, philosophe, humaniste et grand mathéma-
ticien britannique du XX-ième siècle. Elle est basée sur le paradoxe suivant, énoncé par
lui : "Le barbier rase tous les hommes de son village qui ne se rasent pas eux-mêmes".

Lemme A.7. Soit A un ensemble fini contenant au moins deux éléments.

(1) L’ensemble des suites finies composées d’éléments de A est dénombrable.

(2) L’ensemble AN des suites infinies composées d’éléments de A est non-dénombrable.

On peut voir A comme un alphabet : un ensemble de lettres et toute suite finie comme
un mot de taille finie composé avec cet alphabet. Les suites infinies sont des mots de
taille infinie. ce sont toutes les applications de N∗ dans A.
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Démonstration. • Preuve de (1). En notant Sn l’ensemble des suites de longueur
n et Sf l’ensemble des suites finies, on a Sf = ∪n≥1Sn qui est dénombrable d’après la
Proposition A.5, puisque réunion dénombrable d’ensembles finis : #(Sn) = #(A)n <∞.
• Preuve de (2). Du fait que #(A) ≥ 2, il suffit de montrer que l’ensemble {0, 1}N des
suites infinies composées de 0 et de 1 n’est pas dénombrable. En effet, en choisissant deux
éléments distincts a0 et a1 de A, on voit immédiatement que l’application qui à la suite
(ǫn)n∈N dans {0, 1}N associe la suite (aǫn)n∈N dans {a0, a1}N est une bijection de {0, 1}N
sur {a0, a1}N. C’est donc une injection de {0, 1}N dans AN.
Or {0, 1}N est en bijection avec l’ensemble 2N des parties de N : à la suite (ǫn)n∈N

on associe la partie {n ∈ N; ǫn = 1}. Mais on a vu au Lemme A.6 que 2N n’est pas
dénombrable, donc {0, 1}N ne l’est pas non plus. �

Nous somme maintenant en mesure de prouver la

Proposition A.8. Tout intervalle d’intérieur non-vide (i.e. de la forme (a, b) avec
−∞ ≤ a < b ≤ +∞) est non-dénombrable. En particulier, R n’est pas dénombrable.

Démonstration. Il suffit de montrer que le segment [0, 1] n’est pas dénombrable.
Car alors la bijection x ∈ [0, 1] 7→ α+(β−α)x ∈ [α, β] nous assure qu’il en est de même
pour [α, β]. Tout intervalle d’intérieur non-vide (a, b) contient un tel segment [α, β] (il
suffit pour cela que a < α < β < b) et est de ce fait non-dénombrable.

Montrons que [0, 1] n’est pas dénombrable. Tout x ∈ [0, 1] admet un développement
décimal x = 0, x1x2x3 · · · infini (avec éventuellement xn = 0 pour tout n à partir d’un
certain rang) où l’on adopte la convention que si le développement se termine par une
succession infinie de 9, c’est-à-dire si x = a1 · · · ak9999 · · · avec 0 ≤ ak ≤ 8, on rem-
place ce développement décimal par 0, a1 · · · ak−1(ak + 1)0000 · · · En effet 0, 9999 · · · =
9
∑

n≥1(1/10)n = 9 1/10
1−1/10

= 1 = 1, 0000 · · · On note D(x) = (x1, x2, . . . ) ∈ {0, . . . , 9}N∗

la suite correspondant à ce développement décimal unique.
Notons G l’ensemble des suites finies (a1, . . . , ak) d’éléments de {0, 1, . . . , 9} dont le
dernier terme ak est différent de 9. L’ensemble des x concernés par la modification précé-
dente du développement décimal est l’ensemble des x de la forme x = a1 · · · ak9999 · · · .
Il est clairement en bijection avec G. Par conséquent, D : [0, 1] → {0, . . . , 9}N∗ \ G est
une bijection. Or, d’après la Proposition A.7, {0, . . . , 9}N∗ est non-dénombrable et G
est dénombrable (en tant que sous-ensemble des suites finies) donc {0, . . . , 9}N∗ \ G est
non-dénombrable et il en est de même pour [0, 1]. �





ANNEXE B

Éléments de théorie de l’intégration

Nous reprenons la notion d’espérance en introduisant (sans preuves) les résultats
fondamentaux de la théorie de l’intégrale de Lebesgue.

Notations. Nous avons déjà rencontré les espérances des variables aléatoires dis-
crètes

E(X) =
∑

x∈X
xpX(x)

et des variables aléatoires continues

E(X) =

∫

R

xfX(x) dx.

Dans les deux cas, la fonction de répartition FX permet le calcul :

E(X) =
∑

x∆FX(x) où ∆FX(x) = FX(x)− FX(x−)

E(X) =

∫

R

xdFX(x) où dFX(x) = fX(x) dx

Ceci nous suggère la notation unifiée

E(X) =

∫

R

x dFX(x).

Ainsi, nous obtenons aussi

E(ϕ(X)) =

∫
ϕ(x) dFX(x).

Intégration abstraite. L’espérance de X est déterminée par la fonction de répar-
tition FX et puisque FX est elle-même spécifiée par la donnée de X et de (Ω,A,P) on
s’attend à ce qu’une notion générale d’espérance de X puisse être définie à partir des
données (Ω,A,P) et X : Ω→ R.

La variable aléatoire X : Ω → R est dite simple si elle prend un nombre fini de
valeurs. Les variables simples s’écrivent donc

X =
n∑

i=1

xi1Ai

où A1, . . . , An est une partition de Ω. On définit l’intégrale de X, notée E(X), par

E(X) =
n∑

i=1

xiP(Ai).
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98 B. ÉLÉMENTS DE THÉORIE DE L’INTÉGRATION

Toute variable aléatoire positive X : Ω→ [0,∞[ est limite croissante d’une suite (Xn)n≥1

de variables aléatoires simples. C’est-à-dire : Xn(ω) ↑ X(ω) pour tout ω ∈ Ω. On définit
alors l’intégrale de X par

E(X) = lim
n→∞

E(Xn) ∈ [0,∞].

Cette quantité, qui est éventuellement infinie, existe en tant que limite d’une suite crois-
sante et est non-ambigüe : on peut montrer qu’elle ne dépend pas de la suite croissante
approximante (Xn)n≥1.

Pour toute variable aléatoire X, notons pour tout ω ∈ Ω,

X+(ω) = max(X(ω), 0) et X−(ω) = max(−X(ω), 0)

de sorte X = X+ −X− avec X+, X− ≥ 0.

Si E(X+) et E(X−) ne sont pas infinis simultanément, on définit

E(X) = E(X+)− E(X−) ∈ [−∞,+∞].

C’est en particulier le cas lorsque

E(|X|) = E(X+ +X−) <∞.
En théorie de la mesure on note

E(X) =

∫

Ω

X(ω) P(dω) =

∫

Ω

X dP.

L’opération E est donc un opérateur qui agit sur l’ensemble des variables aléatoires X
telles que E(|X|) < ∞. On montre que pour de telles variables aléatoires X,Y et pour
tous a, b ∈ R,

E(aX + bY ) = aE(X) + bE(Y )

c’est-à-dire que l’ensemble des variables aléatoires X telles que E(|X|) <∞ est un espace
vectoriel et que E est une forme linéaire qui agit sur cet espace vectoriel.

Les propriétés de continuité de l’espérance mathématique sont les suivantes.

Théorème B.1 (Théorèmes de continuité de E.). Soit (Xn)n≥1 une suite de variables
aléatoires qui converge simplement vers X : limn→∞Xn(ω) = X(ω), pour tout ω ∈ Ω,
alors

(1) (convergence monotone) si (Xn)n≥1 est une suite positive et croissante, alors

lim
n→∞

E(Xn) = E(X) ∈ [0,∞];

(2) (convergence dominée) si |Xn(ω)| ≤ Y (ω), pour tout ω ∈ Ω et E(Y ) < ∞,
alors

lim
n→∞

E(Xn) = E(X) ∈ R;

(3) (convergence bornée) s’il existe c ∈ R tel que |Xn(ω)| ≤ c, pour tout ω ∈ Ω,
alors

lim
n→∞

E(Xn) = E(X) ∈ R.

La convergence bornée est bien sûr un cas particulier de convergence dominée.
Des conséquences directes du théorème de convergence dominée sont les deux résultats

suivants.
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Théorème B.2 (Continuité par rapport au paramètre). Soit X(t, ω) une fonction sur
R×Ω telle que pour tout t ∈ R, X(t, ·) soit P-intégrable et pour tout ω, t 7→ X(t, ω) ∈ R

soit continue en to.
Si de plus, il existe δ > 0 et une variable aléatoire Y ≥ 0 telle que E(Y ) < ∞ et

supt∈[to−δ,to+δ] |X(t, ω)| ≤ Y (ω), pour tout ω ∈ Ω, alors

t 7→ E(X(t, ·)) ∈ R

est continue en to.

Théorème B.3 (Dérivation sous le signe somme). Soient T un ensemble ouvert de
R et X(t, ω) une fonction sur T × Ω telle que pour tout t ∈ T, X(t, ·) soit P-intégrable
et pour tout ω, t ∈ T 7→ X(t, ω) ∈ R soit dérivable. On note d

dt
X(t, ω) cette dérivée.

Si de plus, il existe δ > 0 et une variable aléatoire Y ≥ 0 telle que E(Y ) < ∞ et
supt∈[to−δ,to+δ] | ddtX(t, ω)| ≤ Y (ω), pour tout ω ∈ Ω, alors

G : t ∈ T 7→ E(X(t, ·)) ∈ R

est dérivable en to et sa dérivée est donnée par

G′(to) = E(
d

dt
X(t, ·)|t=to).

Intégrale de Lebesgue-Stieltjes. Elle peut apparaître comme le cas particulier de
l’intégrale abstraite (de Lebesgue) avec Ω = R. Plus precisément, soit X une variable
aléatoire de fonction de répartition F.On fabrique à partir de F une mesure de probabilité
µF sur la tribu de Borel de R comme suit.

(a) définir µF (]a, b]) = F (b)− F (a),

(b) étendre le domaine de définition de µF à la plus petite tribu de R contenant
tous les intervalles : la tribu de Borel B.

Ainsi, (R,B, µF ) est un espace de probabilité et
∫
ϕdµF

est appelée l’intégrale de Lebesgue-Stieltjes de ϕ par rapport à µF . On la note habituel-
lement ∫

ϕdF ou
∫
ϕ(x) dF (x).

Si X est une variable aléatoire discrète ou continue, on reconnaît alors

E(ϕ(X)) =

∫
ϕ(x) dF (x).

On prend cette égalité comme la définition générale de l’espérance de la variable aléatoire
ϕ(X) (que X soit discrète, continue ou autre).

Une notation bien pratique, avec A ∈ B :

E(1{X∈A}ϕ(X)) =

∫

Ω

1{X∈A}ϕ(X) dP =

∫

{X∈A}
ϕ(X) dP =

∫

A

ϕ(x) dF (x).

On remarque en passant que

E(1{X∈A}) = P(X ∈ A) = µF (A).





ANNEXE C

Espérance mathématique sans théorie de l’intégration

La notion d’espérance mathématique a été introduite sans ambiguïté dans le cadre des
variables aléatoires discrètes, voir (6.13). Rappelons que pour tout couple aléatoire discret
(X,Y ) prenant ses valeurs dans R2 et telles que

∑
x∈X |x|pX(x) <∞ et

∑
y∈Y |y|pY (y) <

∞, l’espérance mathématique de aX + bY est définie par

E(aX + bY ) =
∑

x∈X ,y∈Y
(ax+ by)pX,Y (x, y).

Elle possède les propriétés suivantes :

E(aX + bY ) = aEX + bEY, a, b ∈ R (linéarité)(C.1)

si X ≥ 0, EX ≥ 0 (positivité)(C.1’)

E(1) = 1 (normalisation).(C.1”)

Notre but est de construire une extension de l’opérateur : X 7→ E(X), à une classe
de variables aléatoires X à valeurs réelles plus générale que celle des variables discrètes.
Nous allons montrer que lorsqu’on impose à cette extension de satisfaire les propriétés
(C.1), elle est unique sur la classe considérée.

Soit X 7→ E(X) une extension de l’espérance qui possède les propriétés (C.1). Cet
opérateur est croissant au sens où :

(C.2) X ≤ Y =⇒ E(X) ≤ E(Y ).

En effet, avec (C.1) et (C.1’) : E(Y )− E(X) = E(Y −X) ≥ 0. On en déduit que

(C.3) |E(X)| ≤ E(|X|).

Pour décrire la classe sur laquelle l’extension de l’espérance est calculée, nous introduisons
l’ensemble fonctionnel suivant.

Définition C.4. La classe Ψ est l’ensemble des fonctions de ]0, 1[ dans R qui sont
bornées et dont l’ensemble des points de discontinuité est dénombrable et admet un
nombre fini de points d’accumulation.

Théorème C.5. Soit X 7→ E(X) un opérateur qui prolonge l’espérance mathématique
des variables aléatoires discrètes à des variables aléatoires plus générales et qui possède
les propriétés (C.1). Soit U une variable aléatoire de loi uniforme sur [0, 1]. Alors, pour
toute fonction ψ dans Ψ,

E

(
ψ(U)

)
=

∫ 1

0

ψ(u) du.
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Démonstration. On se replace dans le cadre de la suite des tirages indépendants
uniformes sur {0, . . . , 9} étudié au Chapitre 10. On considère maintenant les approxima-
tions discrètes de U définies pour tout n ≥ 0 par

Un(ω) = 0, ω1 . . . ωn.

Cette variable aléatoire est discrète : elle prend chacune des 10n valeurs un,k = 10−nk,
(0 ≤ k ≤ 10n − 1) avec la probabilité 10−n. Soit ψ une fonction numérique quelconque
sur ]0, 1[. Son espérance mathématique est

E(ψ(Un)) =
∑

0≤k≤10n−1

10−nψ(un,k).

Cette somme est l’intégrale de Riemann d’une fonction en escalier qui approxime ψ. On
en déduit que si ψ est intégrable au sens de Riemann,

(C.6) lim
n→∞

E(ψ(Un)) =

∫ 1

0

ψ(u) du.

On suppose pour le moment que ψ :]0, 1[7→ R est continue et bornée. Puisqu’elle admet
un prolongement continu sur le compact [0, 1]; elle est absolument continue, c’est-à-dire
que wψ(δ) := sup{|ψ(u)−ψ(v)|; u, v tels que |u−v| < δ} tend vers zéro lorsque δ décroît
vers zéro. D’autre part, puisque supn≥0 |U − Un| ≤ 10−n,

|E[ψ(U)]− E[ψ(Un)]| = |E[ψ(U)− ψ(Un)]| avec (C.1)

≤ E[|ψ(U)− ψ(Un)|] avec (C.3)

≤ E[wψ(sup
n≥0
|U − Un|)] avec (C.2)

≤ E[wψ(10−n)] avec (C.2)

= wψ(10−n) avec (C.1) et (C.1”)

D’où il vient que

(C.7) E[ψ(U)] = lim
n→∞

E[ψ(Un)].

En rapprochant cette identité de (C.6), nous obtenons le résultat désiré lorsque ψ est
continue :

E

(
ψ(U)

)
=

∫ 1

0

ψ(u) du.

Il reste à étendre cette identité au cas général : ψ ∈ Ψ.
Soit ψ ∈ Ψ. Son ensemble de points de discontinuité est tel que pour tout ε > 0, il

existe une réunion finie d’intervalles qui le recouvre, que nous noterons Aε et dont la lon-
gueur totale |Aε| est inférieure à ε. Il est clair que la restriction de ψ au complémentaire
de Aε admet un prolongement continu sur [0, 1] (on peut procéder à une série d’inter-
polations linéaires entre les bornes de Aε). Notons ψε cette approximation continue de
ψ. Puisque ψ est bornée, c’est-à-dire : κ := sup0≤u≤1 |ψ(u)| < ∞, on peut choisir ψε de
même borne κ que ψ et nous obtenons

|ψ(u)− ψε(u)| ≤ 2κ1(u∈Aε), u ∈]0, 1[.
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Par conséquent,
∣∣∣E[ψ(U)]− E[ψε(U)]

∣∣∣ =
∣∣∣E[1(U 6∈Aε)(ψ(U)− ψε(U))] + E[1(U∈Aε)(ψ(U)− ψε(U))]

∣∣∣

=
∣∣∣E[1(U∈Aε)(ψ(U)− ψε(U))]

∣∣∣
≤ 2κP(U ∈ Aε)
= 2κ|Aε|
≤ 2κε

où l’on a fait usage d’arguments similaires à ceux invoqués lors de la preuve de (C.7),
ainsi que de E[1(U∈Aε)] = P(U ∈ Aε) (1(U∈Aε) est une variable discrète dont on connaît
l’espérance) et de P(U ∈ Aε) = |Aε| (puisque P(a ≤ U ≤ b) = b− a).

Des arguments analogues nous mènent à
∣∣∣
∫ 1

0

ψ(u) du−
∫ 1

0

ψε(u) du
∣∣∣ ≤ 2κε,

de sorte que pour tout ε,
∣∣∣E[ψ(U)]−

∫ 1

0

ψ(u) du
∣∣∣ ≤

∣∣∣E[ψε(U)]−
∫ 1

0

ψε(u) du
∣∣∣+ 4κε

= 4κε,

puisque, ψε étant continue, nous avons montré plus haut que E[ψε(U)] =
∫ 1

0
ψε(u) du. La

preuve s’achève en faisant tendre ε vers zéro. �

Nous allons donner plus bas une définition de l’espérance mathématique pour une
classe de variables aléatoires continues assez générale. Compte tenu du Théorème 10.3,
toute variable aléatoire X admet le même comportement aléatoire (la même loi) que
F−1
X (U). Par conséquent, ϕ étant une fonction numérique, il est loisible d’écrire E(ϕ(X)) =

E(ϕ ◦F−1
X (U)). Le Théorème C.8 plus bas est une conséquence immédiate du Théorème

C.5.
Nous sommes en mesure d’énoncer le théorème suivant.

Théorème C.8. Soit X 7→ E(X) un prolongement de l’espérance des variables aléa-
toires discrétes à une classe plus générale de variables aléatoires qui satisfait les proprié-
tés (C.1). Soit X une variable aléatoire de fonction de répartition FX et ϕ une fonction
numérique. Si ϕ ◦ F−1

X est dans la classe Ψ, alors

E(ϕ(X)) =

∫ 1

0

ϕ ◦ F−1
X (u) du.

C’est en particulier le cas lorsque F−1
X est dans la classe Ψ et ϕ est bornée et continue

par morceaux.

Remarque C.9 (Au sujet des points de discontinuité de F−1
X .). La fonction F−1

X est
croissante et continue à gauche. Nous notons 〈F−1

X (u)〉 l’intervalle semi-ouvert [F−1
X (u), F−1

X (u+)[.
Il est non vide si et seulement si u est un point de discontinuité de F−1

X . Dans ce cas nous
disons que 〈F−1

X (u)〉 est un intervalle d’absence de X. Cette terminologie est justifiée
par la constatation que lorsque au := F−1

X (u) < F−1
X (u+) := bu, la fonction FX est plate

sur l’intervalle [au, bu[, plus précisément : [au, bu[⊂ {x ∈ R; FX(x) = u} ⊂ [au, bu]. Ceci
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implique que P(X ∈ [au, bu[) = 0, et que pour tout α > 0, P(X ∈]au − α, bu[) > 0 et
P(X ∈]au, bu + α[) > 0.

La formule assez générale du Théorème C.8 n’est pas très parlante. Nous allons l’élu-
cider les variables aléatoires continues. Pour une variable aléatoire continue, un intervalle
d’absence correspond à un intervalle maximal (composante connexe) de l’ensemble des
points d’annulation de fX . Pour que F−1

X soit dans la classe Ψ, il suffit que X admette un
nombre fini d’intervalles d’absence. On en déduit que si l’ensemble {x ∈ R; fX(x) = 0}
est une réunion finie d’intervalles, la fonction F−1

X est dans la classe Ψ.
Supposons maintenant que X admette une fonction de densité fX continue par mor-

ceaux. Dans ce cas, FX est partout continue donc x = F−1
X (u)⇐⇒ u = FX(x); de plus,

sauf en un nombre fini de points, nous avons F ′
X(x) = fX(x).

La formule de changement de variable dans l’intégrale, nous permet en posant x =
F−1
X (u) "d’injecter" du = F ′

X(x)dx = fX(x)dx. Ce qui nous donne E(ϕ(X)) =
∫ 1

0
ϕ ◦

F−1
X (u) du =

∫∞
−∞ ϕ(x)fX(x) dx. L’ensemble de ces considérations nous amènent au ré-

sultat suivant.

Théorème C.10. Soit X 7→ E(X) un prolongement de l’espérance des variables
aléatoires discrétes à une classe plus générale de variables aléatoires qui satisfait les
propriétés (C.1). Soit X une variable aléatoire continue dont la densité fX est continue
par morceaux et telle que {x ∈ R; fX(x) = 0} est une réunion finie d’intervalles. Soit ϕ
une fonction numérique bornée et continue par morceaux, alors

E

(
ϕ(X)

)
=

∫

R

ϕ(x)fX(x) dx.



ANNEXE D

Convexité

On se place dans l’espace vectoriel Rd.

Définitions D.1 (Ensemble et fonction convexes). Pour tous x, y ∈ Rd, on note
[x, y] le segment qui relie x et y, c’est-à-dire [x, y] = {(1− t)x+ ty; 0 ≤ t ≤ 1}.

(1) On dit qu’une partie C de Rd est convexe si

(D.2) ∀x, y ∈ Rd, x, y ∈ C ⇒ [x, y] ⊂ C.

(2) On dit que la fonction ϕ : C → R est convexe sur l’ensemble convexe C si

(D.3) ∀x, y ∈ C,∀0 ≤ t ≤ 1, ϕ((1− t)x+ ty) ≤ (1− t)ϕ(x) + tϕ(y).

Dans la figure suivante, C est une partie convexe du plan alors que A ne l’est pas
puisque [a, b] 6⊂ A bien que a, b ∈ A :

x

y
a

b

C A

convexe non convexe

Exercice D.4. Montrer que les parties convexes de R sont les intervalles.

La propriété (D.3) signifie que toutes les cordes liant deux points du graphe de la
fonction convexe ϕ sont situées au-dessus du graphe. C’est ce qu’illustre la figure suivante.

Cy

(1− t)x+ ty

x

ϕ(x)
(1− t)ϕ(x) + tϕ(y)

ϕ(y)

graphe de ϕ

corde

Dans la figure suivante, le graphe de gauche est celui d’une fonction convexe puisque
toutes ses cordes sont situées au-dessus, alors que celui de droite est celui d’une fonction
non-convexe.
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C Cconvexe non convexe
Deux graphes fonctionnels

Proposition D.5. Soit ϕ : C → R une fonction dérivable sur une partie ouverte et
convexe C de Rd. Les assertions suivantes sont équivalentes.

(a) ϕ est convexe sur C.

(b) Pour tous x, y ∈ C, ϕ(y) ≥ ϕ(x) + 〈ϕ′(x), y − x〉
où ϕ′(x) = ( ∂ϕ

∂x1
(x), . . . , ∂ϕ

∂xd
(x)) est le gradient de ϕ en x et 〈u, v〉 est le produit scalaire

de u et v dans Rd.
Dans le cas particulier où Rd = R, si de plus ϕ est une fonction sur un intervalle

ouvert I ⊂ R, deux fois continûment différentiable (de classe C2), alors les assertions
(a) et (b) sont aussi équivalentes à

(c) Pour tout x ∈ I, ϕ′′(x) ≥ 0.

La partie C est supposée ouverte pour pouvoir définir sans encombre la dérivée de ϕ.
La propriété (b) signifie que le graphe de ϕ se situe au-dessus de tous ses hyperplans
tangents.

Cx

graphe de ϕ

b

b

y

Démonstration. • Preuve de (a) ⇒ (b). (a) exprime que pour tous x, y ∈ C et
tout 0 ≤ t ≤ 1, ϕ(x + t(y − x)) ≤ ϕ(x) + t[ϕ(y) − ϕ(x)]]. D’où en prenant t > 0,
[ϕ(x+ t(y− x))−ϕ(x)]/t ≤ ϕ(y)−ϕ(x), et en le faisant tendre vers 0 : 〈ϕ′(x), y− x〉 ≤
ϕ(y)− ϕ(x), c’est-à-dire (b).

• Preuve de (b) ⇒ (a). Par l’absurde. Supposons que (b) soit satisfait et que (a) ne le
soit pas. Nous allons montrer une contradiction. Puisque (a) n’est pas satisfait, il existe
0 < t < 1 tel que

(D.6) ϕ(xt) > (1− t)ϕ(x) + tϕ(y).

L’hyperplan tangent au graphe de ϕ en xt := (1 − t)x + ty a pour équation avec les
coordonnées (u, α) ∈ Rd × R : α = ϕ(xt) + 〈λ, u − xt〉 où λ = ϕ′(xt) ∈ Rd. Puisque (b)
est supposé vrai, nous avons en x :

(X) ϕ(xt) + 〈λ, x− xt〉 = ϕ(xt)− 〈λ, t(y − x)〉 ≤ ϕ(x)
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et en y :

(Y) ϕ(xt) + 〈λ, y − xt〉 = ϕ(xt) + 〈λ, (1− t)(y − x)〉 ≤ ϕ(y)

En faisant (1 − t)(X) + t(Y), nous obtenons ϕ(xt) ≤ (1 − t)ϕ(x) + tϕ(y) qui contredit
(D.6).

• Preuve de (b) ⇒ (c). Prenons y − x = th avec t > 0 de sorte que (b) nous donne
ϕ(x + th) − ϕ(x) − ϕ′(x)th ≥ 0. D’autre part, puisque ϕ est C2, il existe 0 ≤ θ ≤ 1 tel
que ϕ(x+ th)− ϕ(x)− ϕ′(x)th = ϕ′′(x+ θth)t2/2. On en déduit que ϕ′′(x+ θth) ≥ 0 et
en faisant tendre t vers 0, nous obtenons grâce à la continuité de ϕ′′ que ϕ′′(x) ≥ 0.

• Preuve de (c) ⇒ (b). Puisque ϕ′′ ≥ 0, ϕ′ est croissante et pour tous x ≤ y, ϕ(y) =
ϕ(x) +

∫ y
x
ϕ′(z) dz ≥ ϕ(x) +

∫ y
x
ϕ′(x) dz = ϕ(x) + ϕ′(x)(y − x). Lorsque y ≤ x, ϕ(y) =

ϕ(x) +
∫ y
x
ϕ′(z) dz = ϕ(x)−

∫ x
y
ϕ′(z) dz ≥ ϕ(x) +

∫ x
y
ϕ′(x) dz = ϕ(x) + ϕ′(x)(y − x). Ce

qui prouve (b) et achève la preuve de la proposition. �

Dans la figure suivante, le graphe de gauche est celui d’une fonction convexe puisque
toutes ses tangentes sont situées au-dessous, alors que celui de droite est celui d’une
fonction non-convexe.

C Cconvexe non convexe
Deux graphes fonctionnels

Exercice D.7. Montrer que les fonctions suivants sont convexes.

(a) ϕ(x) = ax+ b, x ∈ R, avec a, b ∈ R.

(b) ϕ(x) = |x|p, x ∈ R, avec p ≥ 1.

(c) ϕ(x) = −xp, x ∈ [0,∞[, avec 0 ≤ p < 1.

(d) ϕ(x) = eax, x ∈ R, avec a ∈ R.

(e) ϕ(x) = x ln x− x+ 1, x > 0.

(f) ϕ(x) = − ln x, x > 0.

(g) ϕ(x) = ‖x‖, x ∈ Rd une norme sur Rd.
Par exemple, ‖x‖ = (x2

1+· · ·+x2
d)

1/2 ou ‖x‖ = |x1|+· · ·+|xd| ou ‖x‖ = max1≤i≤d |xi|.
(h) ϕ(x) = ψ(‖x‖), x ∈ Rd où ‖ · ‖ est une norme sur Rd et ψ est une fonction convexe

croissante sur [0,∞[.
En particulier, ϕ(x) = ‖x‖p, x ∈ Rd, avec p ≥ 1.
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