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CHAPITRE 1

Fondements de la théorie des probabilités

1.1. Evénements

Nous commencons par présenter les fondements axiomatiques de la théorie des pro-
babilités.

DEFINITION 1.1. L’ensemble des réalisations possibles d'une expérience est appelé
univers de 'expérience. Il est généralement noté €.

EXEMPLE 1.2. On tire une fois a pile ou face. Il est naturel de considérer 2 = {p, f}
ou p et f sont les réalisations de I’expérience qui correspondent aux tirages respectifs de
pile et de face. Voici quelques événements :

(a) la réalisation est face
(b)
(c)

(d) la réalisation n’est pas face

la réalisation est face ou pile

la réalisation est face et pile simultanément

Ces événements peuvent étre décrits respectivement par les parties A de €2 suivantes :
(a) A={/f}
(b) A={frufp}={fp} =9
() A={ftn{p}t=10
(d) A={f}"=A{p}
ou A€ désigne le complémentaire de la partie A dans €.

EXEMPLE 1.3. On lance un dé une fois. Il est naturel de considérer 2 = {1,2,3,4,5,6}
dont les éléments correspondent aux différentes facettes du dé. Voici quelques événe-
ments :

(a) la réalisation est 1
(b)
()

(d) la réalisation n’est pas un nombre pair

la réalisation est un nombre pair

la réalisation est un nombre pair inférieur a 3

Ces événements peuvent étre décrits respectivement par les parties A de €2 suivantes :
(a) A={1}
(b) A={2,4,6}
(c) A={2,4,6} n{1,2,3} = {2}
(d) A={2,4,6}°={1,3,5}
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Si A et B sont des événements qui correpondent respectivement aux réalisations
effectives a et b, on peut avoir besoin de considérer les événements composés :

a N A
b SN B
non a -—» A°
aethb -3 ANB
a mais pas b - A\ B
aoub - AUB
a ou bien b - AAB

N

ol
— A\ B = AN B¢ est la difféerence A moins B, c’est-a-dire I'ensemble des éléments
qui se trouvent dans A mais pas dans B;
~ AAB = (AU B)\ (AN B) est la différence symétrique de A et B, c’est-a-dire
I’ensemble des éléments qui se trouvent soit dans A, soit dans B, mais pas simul-
tanément dans A et B.

A\ B

B\ A

La région colorée est AAB = (A\ B)U (B \ A). Remarquons la différence entre ou bien
qui est exclusif et ou qui ne 'est pas et correspond & la réunion A U B.

Si AN B = (), on dit que les événements sont incompatibles, () est I'événement impos-
sible et ) est ’événement certain.

L’ensemble de tous les événements est noté A, il est inclus dans I’ensemble de toutes
les parties de  notée 2. Cette notation est justifiée par 'exercice suivant.

EXERCICE 1.4. En considérant I'ensemble des applications {oui, non}* de Q dans
{oui, non}, montrer que lorsque le cardinal de € est n, celui de 2% est 2.

Lorsque ) n’est pas un ensemble dénombrable (voir la Définition A.1), pour des
raisons subtiles (qui ne sont pas aisément compréhensibles au niveau de ce cours) on ne
pourra pas en général prendre A = 2°. Compte tenu de ce qui précede, A doit au moins
satisfaire :

(1) ABe A= AUBcAet ANBc A
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(2) Ac A= A°c A

(3) 0 € A.
EXEMPLE 1.5. On répéte notre lancer de pile ou face jusqu’a ce qu’on obtienne
pile. L'univers est alors Q = {wy,ws,...} avec wy = p, wy = fp, wg = ffp,... La

réalisation w; est : "on observe pile pour la premiére fois au i-éme lancer". L’ensemble
correspondant a I'événement : "l'instant de premiére apparition de pile est pair" est
A = {wo} U{ws} U{ws} U..., c’est une réunion infinie dénombrable. Cette remarque
justifie la définition suivante.

DEFINITION 1.6. Un ensemble A de parties de ) est appelée une tribu (ou une o-
algebre) si
(1) A1, Ay, e A= U Aii={weI>1lweA}te A
(2) Ac A= A€ A
3)0eA
Les éléments de A (ce sont des parties de €)) sont appelés des événements.
EXEMPLE 1.7 (Exemples de tribus).
(a) A ={0,Q} (c’est la plus petite tribu)
(b) A = 2% (c’est la plus grande tribu)
(c) StACQ, A={0,A, A, Q}.
A une expérience, on associe le couple (€2, A) oi A est une tribu de . Dire que A
est un événement, c’est dire : A € A.
REMARQUE 1.8.

Lorsque € est un ensemble dénombrable (en particulier fini), on prend toujours
pour tribu A = 29 : I'ensemble de toutes les parties de €.

1.2. Probabilité

Si on note P(A) la probabilité d’occurence d’'un événement A € A, on attend que :

-~ 0% =0<P(A) <1=100% (par convention)

— P(2) =1 (condition de normalisation)

— pour tous A,B € A, si AN B = alors P(AU B) =P(A) + P(B) (additivité)

Comme nous 'avons déja remarqué, il peut étre utile de considérer des événements
constitués par une réunion dénombrable d’événements disjoints A1, A, ... On note dans
de cas leur réunion |J;°; A; = | |2, A; pour mettre I'emphase sur leur disjonction qui
signifie : Vi, 7,1 # j = A; N A; = (. D’ou la définition suivante.

DEFINITION 1.9. Une mesure de probabilité P sur (£2,.A) est une fonction P : A —
[0, 1] qui satisfait :

(1) P(Q) =1

(2) si Ay, Ay, ... est une suite d’événements disjoints, alors :

]P’(lei) - iP(Ai).
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Le triplet (€2, .A,P) est appelé un espace de probabilité.

Il provient immédiatement de cette définition,

— en choisissant A; = Ay = 0, que 0 < P(0) = lim, .o nP()) et par conséquent
P(0) = 0;

— en choisissant A; = A, Ay = Bet A3 = Ay = --- = (), que pour tous A,B € A
disjoints, P(AU B) = P(A) + P(B).

— Il en va de méme pour toute réunion d’un nombre fini d’événements disjoints :

P<|;|Ai) - iIP’(Ai).

EXEMPLES 1.10.

(a) Pile ou face correspond a Q = {f,p}, avec A = {0, {f}, {p}, Q} et P(0) = 0,
P{f}) =P({p}) = 1/2, P(Q) = 1.

(b) Un lancer de dé éventuellement pipé peut se modéliser comme suit : ) =
{1,2,...,6}, A = 2% et P({i}) = p; > 0,1 < i < 6avecp +---ps = 1.
Pour tout A C €2, nous obtenons P(A) = >._, p;.

(c) Sile dé est honnéte, p; = --- =pg = 1/6 et P(A) = #(A)/6 ot #(A) désigne le
cardinal de A.

Voici quelques conséquences immédiates de la définition de P.

LEMME 1.11. Pour tous A, B € A, nous avons
(1) P(A°) =1 —P(A)
(2) AC B=P(B)=P(A)+P(B\ A) >P(A)
(3) P(AUB) =P(A) +P(B) —P(AN B)
DEMONSTRATION. Laissée en exercice. 0

DEFINITION 1.12 (Masse de Dirac). Soit a € Q. On définit la fonction d’ensembles
0o+ A —{0,1} par

0a(A) =

{1 51a6A’ Ac A

0 sinon

On appelle , la masse de Dirac au point a.

EXERCICE 1.13.
(a) Vérifier que 6, est une mesure de probabilité sur A.

(b) Si on prend trois éléments distincts a, b et ¢ de €2, alors P = % 00+ % Op+ % 0. est aussi
une mesure de probabilité.

(¢) Montrer que P({a,b}) = 5/7 et calculer P({a, c}).
La mesure de probabilité P = % 0 —i—% 0p+ % 0. de I'exercice précédent modélise I'expé-

rience qui attribue les chances d’occurence 1/7, 4/7 et 2/7 aux réalisations élémentaires
a,bet c.
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EXEMPLE 1.14. On se donne une urne contenant 3 boules rouges appelées wy,ws et
w3, 2 bleues appelées wy,ws et 1 verte : wg. On tire au hasard une boule et on note sa
couleur.

On peut prendre Q = {wy,...,ws} avec P(w,) = 1/6,n = 1,...,6 puisque notre intuition
nous suggére 1’équiprobabilité. Bien stir, on choisit A = 29 et on obtient pour tout A C €,

P(A) = #(A)/6. On constate que

Oy, -

n

Py

n=1

=

Notons les événements R = {w;,ws,ws}, B = {ws,ws}, V = {we} correspondant au
tirage d’une boule rouge, bleue ou verte. On voit que P(B) = 1/6Y.°_ 6, (B) =

1/65°°_ 00, ({ws,ws}) = (0+04+0+14+1+0)/6=1/3.
Si on n’est concerné que par la couleur de la boule, on peut prendre 'univers Q' = {r b, v}
munit de la mesure de probabilité¢ P’ = P(R)6, + P(B)d, +P(V)d, = 36, + 50 + ¢,

Lorsque €2 est 'ensemble dénombrable Q2 = {w,; n > 1}, toute mesure de probabilité
sur A = 29 est de la forme

(1.15) P=> puio,

n>1

ol (pn)n>1 est tel que p, > 0,Vn et >, p, = 1. L'interprétation de cette formule est :

P({wn}) = pn, n > 1.
Notre premier résultat concernant une quantité infiniment dénombrable d’opérations
sur les événements est le suivant.

LEMME 1.16.

(1) Soient Ay, As, ... une suite croissante (pour la relation d’inclusion) de A : A; C
Ay Cv et A= Ay ={weQ;3i>1we A} salimite. Alors

P(A) = lim P(A,).

n—oo

(2) Soient By, Ba, ... une suite décroissante (pour la relation d’inclusion) de A :
BiDBy D et B=()_By={weQVi>1we A} sa limite. Alors

P(B) = lim P(B,).

n—oo

DEMONSTRATION. Puisque (A,),>1 est une suite croissante,
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A=A U (A2 \ A1) U (Az\ Ay) U+ -+ est la réunion disjointe d’une famille d’événements.
Par conséquent,

P(A) = P(A)+ iP(AHl \ A)

= B(A) + lim Y [(Ai)  B(4)

= lim P(A,)

n—oo
Pour le résultat concernant la famille décroissante, passer aux complémentaires en
utilisant la relation (AU B)¢ = A°N B O

EXEMPLE 1.17. On joue indéfiniment a pile ou face jusqu’a ce qu’on obtienne pour
la premiére fois pile. Le premier instant d’obtention de pile est un entier qui peut étre
arbitrairement grand. On doit donc prendre un univers {2 de cardinal infini. Un bon choix
est Q = {p, f}112} : ensemble des suites w = wiwy ... w, ... constituées des lettres p et
f avec l'interprétation que w, = p signifie qu’on a obtenu pile au n-iéme lancer. Notons
que nous choisissons un univers € différent de celui de ’'Exemple 1.5, pour modéliser la
méme expérience.

L’événement qui correspond a l'obtention pour la premiére fois de pile au n-iéme
lancer est P, = {w € Q; wy = -+ = w,_1 = f,w, = p}. C’est un ensemble infini qui
a le méme cardinal que ) puisque seul le début des suites w est spécifié (Exercice : le
prouver). Il est naturel de demander lors de notre modélisation de cette expérience que
P(P,) = 27" puisqu’il y a 2" mots de longueur n constitués des lettre p et f et que
chacun de ces mots qui code la réalisation de n lancers de pile ou face doit avoir la méme
probabilité (situation d’équiprobabilité).

Soit B, = {w € Q; wy = -+ = wy = f} = |j5pyq P I'événement "il n'y a pas eu
pile pendant les n premiers lancers". L’additivité des probabilités d’événements disjoints
sécrit P(By,) = Y ;.1 P(P) cest-a-dire 27" = 3 . 2°. On vient de retrouver une
formule bien connue.

La suite (B,,),>1 est décroissante avec (), -, B, = P = {@w} ot w = ffff... est
la suite constituée de f uniquement : I'’événement "pile n'apparait jamais". Le lemme
précédent nous assure de P(Py) = lim, 27" = 0. Clest-a-dire que P(w) = 0. En
d’autres termes, avec cette modélisation de l'expérience, on conclut que I'événement
complémentaire "pile finit par apparaitre" est de probabilité 1 — 0 = 1; il est certain.

Un paradoxe. Compte tenu de la symétrie de notre modélisation, tous les w sont équipro-
bables : Vw € Q, P(w) = P(w) = 0. Or la “somme" des probabilités de tous les événements
¢léementaires doit étre égale a 1: “Y° o "P(w) = 1. Ce qui nous meéne & “»° 70 = 1.
Une somme de zéros égale a un! Cette somme ne peut donc pas étre la somme d’une
série car ) 0 = 0. C’est la raison pour laquelle on a mis “) " entre guillemets. On
leve le paradoxe en se rappelant que €2 est un ensemble non-dénombrable (voir le Lemme
A.7-2), c’est-a-dire qu’il ne peut pas étre mis en injection dans N, il est beaucoup plus
gros. De ce fait “»° _,” est une opération indéfinie; en particulier elle n’est pas une
série.



CHAPITRE 2

Variables aléatoires

Pour définir une variable aléatoire, seul (£2,.4) suffit. On laisse P de coté pour le
moment. On se donne (2, .A).

Essentiellement, une variable aléatoire est une fonction numérique sur 'univers {2 souvent
notée X : Q — R.

EXEMPLE 2.1. On joue deux fois de suite & pile ou face. Notre univers est {2 =
{pp,pf, [p, ff} (Uordre des lancers est pris en compte). Le nombre d’apparitions de pile
est la variable aléatoire suivante

2 siw=pp
X(w)=<¢ 1 siwe{pf, fp}
0 siw=ff

EXEMPLE 2.2. On jette une fleche par terre et on note ’angle de sa direction avec le
nord magnétique. Une telle expérience peut étre décrite a I'aide de 2 = [0, 27[. Quant
a la tribu A, contentons-nous de dire qu’elle contient entre autres toutes les réunions
dénombrables d’intervalles. L’application

X(w)=w, wel0,2n]

est la variable aléatoire qui correspond a l’angle de la fleche. Si ’on considére le cosinus
de cet angle : Y = cos X, on obtient & nouveau une variable aléatoire sur (€2,.4).
Nous reviendrons sur la question du choix de P a I’Exemple 2.7.

Il est tres pratique d’introduire la notation suivante
{we; X(w)eC}:={Xe(C}, CCR.
En particulier, nous noterons {w € Q; X(w) <z} ={X <z}.

DEFINITION 2.3. Une application X : 2 — R est une wvariable aléatoire réelle si pour
tout = € R, 'ensemble {X < z} appartient a A.

Lorsque €2 est dénombrable on prend A = 2 et bien stir toute fonction numérique X
sur ) est une variable aléatoire. Mais lorsque €2 n’est pas dénombrable, comme c’est le
cas dans I’Exemple 2.2, pour des raisons techniques délicates d’une difficulté dépassant
le niveau de ce cours, on ne peut pas considérer toutes les fonctions numériques X sur
() mais seulement celles qui sont spécifiées dans la définition précédente.

REMARQUES 2.4.

(1) Notons que X est une fonction. Elle n’est donc ni variable, ni aléatoire! Le vo-
cable variable aléatoire date du début de la théorie des probabilités avec Pierre
de Fermat (7-1665) et Blaise Pascal (1623-1662), bien avant que les mathéma-
tiques soient formalisées. Il faut donc prendre 'expression variablaléatoire sans
lui accorder une portée sémantique — n’hésitez pas a ouvrir votre dictionnaire.

7
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(2) Les premiéres formalisations rigoureuses de la théorie des probabilités datent du
début du vingtiéme siécle. Nous pratiquons celle de Kolmogorov, mathématicien,
physicien, génial et soviétique.

2.1. Fonction de répartition

Dés lors que 'on réintroduit la mesure de probabilité P, le comportement aléatoire
de X peut étre quantifié. L’objet fondamental de cette description est la fonction de
répartition.

DEFINITION 2.5. On se donne (€2, 4,P) et une variable aléatoire X sur (2, A4). La
fonction de répartition de X est définie par

Fx(z)=P(X <x), z€R.

Notons que pour pouvoir écrire P(X < z), il faut que X soit une variable aléatoire
au sens de la Définition 2.3.

EXEMPLE 2.6. On reprend la variable aléatoire X de I’Exemple 2.1. Notre espace

probabilisé est (2, A, P) avec Q = {pp,pf. fp, [f}, A= 2% et P(pp) = P(pf) = P(fp) =
P(ff) = 1/4. Nous avons bien stir, P(X =0) =P(X =2)=1/4et P(X =1) =1/2. La
fonction de répartition de X est

0 sixze€l—o00,0]

) 14 sizeloq]
Fx@) =9 3/4 sizel2
1 size2,+o00]
et son graphe est
Y
1
e =1/4
T ’—(
: p1=1/2
14 {
po=1/4 -
0 1 2 x

Représentation graphique de y = Fx(x)

On constate que F'y ne croit que pour les valeurs effectivement fréquentées par X : 0, 1 et
2. La hauteur de chacune des marches est respectivement py = P(X =0), p; = P(X = 1)
et po = P(X = 2).

EXEMPLE 2.7 (suite de I'Exemple 2.2). Compte tenu de la symétrie de 'expérience,
il semble raisonnable d’en modéliser le hasard a l'aide de la mesure de probabilité qui
satisfait P(]a,b]) = (b —a)/(27), 0 < a < b < 27. Soient X (w) = w et Y (w) = cosw. Les
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fonctions de répartition de X et Y sont

0 si <0
Fx(x)=1< z/(2m) si 0<z <27
1 si x> 27
et
0 si y<—1
Fy(y) =< 1—(arccosy)/m si —1<y<1
1 st y>1

En effet, pour 0 < x < 27
Fx(z) = P(X <ux)

Représentation graphique de z = Fx(z)
et pour -1 <y <1

2(m — ayccos y)/\ \MCCOS Y
~1 NIDNEIRE

Fy(y) = PY <y)
P{w € Q; cosw < y}) =P(X € [—(m — arccosy), ™ — arccos y])
2(m — arccosy)/(2m) = 1 — (arccosy)/m

-1 0 1 y>

Représentation graphique de z = Fy(y)
Les fonctions de répartition jouissent d’un certain nombre de propriétés.
PROPOSITION 2.8. Une fonction de répartition F' possédent les propriétés suivantes :

(1) lim,,_o F(z) =0 et lim, ., F(z) =1,



10 2. VARIABLES ALEATOIRES

(2) F est croissante
(3) pour tous a < b, P(a < X <b) = F(b) — F(a)
(4) F est continue a droite
DEMONSTRATION. e Preuve de (1). Soit B, = {X < —n}. Alors By, B, ... est une
suite décroissante d’événements de limite vide. Par conséquent, grace au Lemme 1.16,
lim,, .o P(B,) = P(})) = 0. Pour I'autre limite, considérer A, = {X < n}.
e Preuve de (2) et (3). Soient a < b et A(a) = {X < a}, A(a,b) = {a < X < b}. Alors,
A(b) = A(a) U A(a, b) est une union disjointe, de sorte que
P(A(b)) = P(A(a)) + P(A(a,b))
d’ou il vient que
F()=F(a)+Pla < X <b) > Fla)
qui est (3) et prouve (2).
e Preuve de (4). Avec la notation précédente, pour tout a € R, A(a,a+ h) décroit vers le
vide lorsque h > 0 décroit vers zéro. Par conséquent, grace a (3), limy o F(a+h)—F(a) =

lim, e Fa+1/n)— F(a) = lim, e P(X €la,a+1/n]) = © P(X € lim, .]a,a+1/n]) =
P(X € () = 0, ou I'égalité (%) est une conséquence du Lemme 1.16 et U'existence de la
limite limy, o F'(a + h) est garantit par le croissance de F' démontrée au point (2). UJ

Le résultat suivant montre que la fonction de répartition permet d’évaluer la proba-
bilité P(X € I) pour n'importe quel intervalle I.

PROPOSITION 2.9. Soient —oo < a < b < +oo. Alors,

(1) P(X €a, b)) = Fx(b) = Fx(a);
(2) P(X € [a,0]) = Fx(b) = Fx(a™);
(3) P(X €la, b)) = Fx(b7) — Fx(a);
(4) B(X € la,b]) = Fx(b™) — Fx(a™)

ot Fx (¢™) := limg. Fix () est la limite a gauche de Fx en c et par convention Fx(—o0) 1=
lim, . o =0 et Fx(+00) :=lim,_, o Fx(z) =1, d’aprés la Proposition 2.8-(1).

On notera que la limite & gauche Fx(c¢™) existe puisque Fy est une fonction croissante
de sorte que lim,y. Fx(z) = sup,.. Fx(z).

DEMONSTRATION. e Preuve de (1). Dans ce cas, b < oco. Lorsque a = —o0, c’est
évident et lorsque a est fini, ce résultat a été obtenu a la Proposition 2.8.
e Preuve de (2). Dans ce cas, a et b sont finis. Puisque, [a,b] = (),5;]a — 1/n,b] on
a {X € [a,b]} = ,>1{X €la —1/n,b]} et on obtient a l'aide de (1) et du Lemme
1.16, IED(X € [a,b]) = lim, oo P(X €]a — 1/n,b]) = lim, o Fx(b) — Fx(a — 1/n) =
Fx(b) = Fx(a™).
e Preuve de (3). Prenons a = —oo. Si b = o0, le résultat est évident et si b < oo,

P(X €] — 00,b]) = (X € Un21] 00, b — 1/n}) = lim, oo P(X €] —00,b—1/n]) =
lim,, o Fx(b—1/n) = Fx(b™). Lorsque a est fini, P(X €la,b]) = P(X €]—00,b])—P(X €
| = 00,d]) = Fx(b7) — Fx(a),

e Preuve de (4). Dans ce cas a est fini et en tenant compte de (3), P(X € [a,b]) =
limy, 0o P(X €Ja — 1/n,b]) = lim, oo Fx(b7) — Fx(a —1/n) = Fx(b~) — Fx(a™). O
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2.2. Variables aléatoires discrétes
Commencons par rappeler la définition d’une variable aléatoire discréte.

DEFINITION 2.10. La variable aléatoire X est dite discréte si elle prend ses valeurs
dans une partie dénombrable {z,;n € N} de R ot N est un ensemble d’indices.

Rappelons que certains des résultats les plus simples au sujet de la dénombrabilité
sont présentés en Annexe A.
REMARQUES 2.11.

(1) Bien str, on peut sans restriction supposer que les z,, sont tous distincts.
(2) Puisque N est dénombrable, on peut choisir N = {1,..., K} si X prend K =
#(X(€2)) < oo valeurs ou bien N = {1,2,...} si X prend une infinité de valeurs.

EXEMPLES 2.12.

(1) La variable aléatoire de ’'Exemple 2.1 est discréte.

(2) On note X le premier instant d’obtention de pile dans I'Exemple 1.17. C’est une
variable aléatoire a valeurs dans {1,2,...} U {oo} ou X = oo signifie que pile
n’apparait jamais. On a vu que P(X = 0o) = 0 de sorte que X est effectivement
a valeurs dans R et qu’on peut considérer sa fonction de répartition. On a déja
vu que pour tout n > 1, P(X = n) = P(B,) = 27". La représentation graphique
de F'x est

1V2+14=3/4+ - .
C | 14 :
1/2 A ._—(

-

Représentation graphique de y = Fx(x)

Comme nous allons le voir, de telles fonctions de répartition sont typiques des va-
riables discrétes.

Le comportement d’une variable discréte X est décrit par la donnée de (z,, pn)nen
ou les z, sont supposés distincts et p, := P(X = x,) > 0. Du fait que 1 = P(X € R),
nous obtenons la condition de normalisation
(2.13) d pa=1

neN

On peut toujours choisir pour N une partie de Z constituée de nombres consécutifs de
sorte que les valeurs de X soient rangées par ordre croissant : -+ < x, 1 < T, < Tpy1 <
-+ . A Taide de la Proposition 2.8-(3), on voit que P(X = z,,) = P(z,1 < X < ,) =
FX (ZL’n) — Fx<CL’n_1), soit

(214) Pn = Fx(l’n) — Fx(l'n_l), nenN
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avec les conventions & (i,f(n)—1) = —00 et Fx(—00) = 0. De plus, pour tous x, 1 < z <
Yy < &, nous avons 0 < Fx(y) — Fx(z) =Pz < X <y) <Plrp1 < X <z, =0.
Par conséquent Fx(z) = Fx(y), ce qui signifie que Fx est constante sur les intervalles
semi-ouverts [x,_1, z,[. La forme générale de F'x est donc

Yy
1
Pn+1
o R
T ¢ Pn—-1 ‘
- : : :
} | }
0 Tp_1 T, Tnt1 z

Représentation graphique de y = Fx(x)

Une telle fonction de répartition est dite atomique : c’est-a dire qu’elle est constante
entre ses discontinuités qui sont des sauts positifs.

2.3. Variables aléatoires continues

La situation précédente est radicalement différente de celle des variables aléatoires
continues.
DEFINITIONS 2.15.

(1) Une fonction numérique est dite continue par morceauz si tous ses points de
discontinuité sont isolés. Ceci signifie que pour tout point de discontinuité il
existe un intervalle ouvert qui le contient et ne contient pas d’autre point de
discontinuité.

(2) La variable aléatoire X est dite continue si sa fonction de répartition peut s’écrire
sous la forme

(2.16) Fx(z) = /x fx(u)du, zeR

pour une certaine fonction fy : R — [0, oo continue par morceaux et intégrable.

(3) Dans ce cas, la fonction fx est appelée fonction de densité de la variable aléatoire
X.

EXEMPLE 2.17 (suite de 'Exemple 2.7). On constate que X et Y sont continues
puisque

Pe@ = [ fstdn Bt = [ el

avec les fonctions de densité

Frla) = { 1/(2m) siz € [0,2n7] , fr(y) = { 1/(r/T—32) siye[-1,1]

0 sinon 0 sinon
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1/(2m)

0 2T X
Représentation graphique de z = fx(x)

\
z

1 ——

-1 0 1
Représentation graphique de z = fy (y)

Par souci de lisibilité, ces deux représentations ne sont pas & la méme échelle. Notons
I’explosion en -1 et 1 de la densité de Y.
REMARQUES 2.18.

(1) Tl est clair que la fonction de répartition F'y d’une variable continue est continue.
En fait, elle est un peu plus réguliére : des fonctions Fx qui admettent une
représentation (2.16) sont dites absolument continues.

(2) Si fx est elleeméme continue, F est dérivable (de classe C') et Fiy = fx.

(3) Remarquons que F'x n’est pas dérivable aux points de discontinuité de fy.

Si X est une variable aléatoire continue, Fy est une fonction continue et toutes les
expressions des membres de droite des égalités de la Proposition 2.9 sont égales. On en
déduit immédiatement le

COROLLAIRE 2.19. Si X est une variable aléatoire continue de densité fx, pour tous
a < b nous avons

P(X €]a,b]) = P(X € [a,b]) = P(X €]a,b])

_ P(X € [a,b]) = / Ful() da.

Lorsque X est continue, on notera parfois P(X € (a,b)) chacune des quantités égales
P(X €la, b)) =P(X € [a,b]) = P(X €]a,b]) = P(X € [a,b]).

Y

y = fx(z)
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En se souvenant de la définition de I'intégrale de Riemann comme limite de sommes de
Darboux, on obtient en tout point x de continuité de la densité fx que lorsque h > 0
tend vers zéro, P(X € (z,z+ h)) = f;”h fx(t)dt = fx(x)h+n(h)h ot lim,_on(h) = 0.
De fagon informelle, on traduit ceci par

(2.20) P(X € (z,x+ h)) 2 fx(x)h.
Y1 airex he(h) /2
........... Je(h)
fx (o) — ol
, y= fx(z)
A
0 Lo To + h z

are= fx(x,)h = P(X € (2o, + h))

On constate donc que la variable aléatoire X a plus de chance de prendre des valeurs dans
les régions ou fx est grande. En particulier, X ne prend pas de valeur dans ’ensemble

{fx =0} :={z e R; fx(z) = 0}.
Bien évidemment, puisque 1 = P(Q2) = P(X € R), nous avons toujours la condition
de normalisation

(2.21) /fX(:v) dx = 1.
R
qui est 'analogue de (2.13).

2.4. Quelques éléments de réflexion

Nous concluons ce chapitre en donnant un exemple de variable aléatoire qui n’est ni
continue, ni discréte ; ainsi qu’une remarque au sujet de la tribu A lorsque X prend un
nombre non-dénombrable de valeurs.

EXEMPLE 2.22 (Une variable aléatoire ni continue, ni discréte). On tire une boule
d’une urne qui contient 1 boule rouge et 2 boules vertes. Si la boule obtenue est verte,
alors on lance notre fléche par terre et on mesure son angle. L’univers de I'expérience est
Q={r}U{(v,x); 0 <z <27}. Soit X : Q2 — R donnée par

X(r)=-2,9, X((v,2)) = .

X prend ses valeurs dans {—2,9} U [0, 27[ et sa fonction de répartition admet la repré-
sentation graphique suivante.

-2,9 0 27 T
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Représentation graphique de y = Fx(x)
EXEMPLE 2.23 (L’escalier du diable).

REMARQUE 2.24.

Clairement, si X prend un nombre non-dénombrable de valeurs, il est nécessaire
que €2 ne soit pas dénombrable. C’est le cas pour les variables continues. En
revenant a la Remarque 1.8, on peut se demander pourquoi dans cette situation
on ne pourrait pas prendre la tribu 2 de toutes les parties. C’est a 1’évidence
une tribu et on peut donc considérer une probabilité P construite sur elle. Le
probléme que ’on rencontre est le suivant. On peut montrer qu’il n’existe pas de
mesures de probabilités sur 2 autres que celles de la forme (1.15) : > -, ppd,

car 2 est un ensemble trop gros.






CHAPITRE 3

Loi et espérance d’une variable aléatoire

Nous commencons par présenter les notions de loi et d’espérance dans la situation
la plus simple qui est celle des variables discrétes. Puis, nous étendons par analogie ces
notions au cas des variables continues. Finalement, nous montrons qu’il existe un cadre
mathématique général qui permet de comprendre et définir ces notions pour toutes les
variables aléatoires.

3.1. Variables discrétes

Soit X une variable aléatoire qui prend les valeurs {x,;n € N} ot les z,, sont distincts
et N est un ensemble d’indices inclus dans ’ensemble {1,2,...} des entiers positifs non
nuls, voir les Remarques 2.11. On décrit le comportement aléatoire de X par la donnée
de (Zn, pn)nen avec p, := P(X = x,), n € N. Cette donnée est moins informative a
priori que celle de (X, P) qui décrit le phénomeéne w par w, mais elle est suffisante pour
obtenir toutes les quantités moyennes que nous désirons.

DEFINITION 3.1. La loi de la variable aléatoire discréte X est

(3.2) Px = puba,

neN

Une loi de cette forme est dite atomique. Ses atomes sont les x,, tels que p, > 0.

On rappelle que 9, est la masse de Dirac au point z, ¢’est-a-dire que pour toute partie
B C R, §,(B) = é :inif B , voir la Définition 1.12. La loi Px est une mesure de
probabilité sur R.

EXEMPLES 3.3.
(1) La variable aléatoire X de I'Exemple 2.12-(1) a pour loi Py = 18y + 301 + 1.
(2) La loi de celle de 'Exemple 2.12-(2) est Py =) -, 27"d,.
Soit B une partie de R, nous constatons que
(3.4) P(X € B)=Px(B), BCR

puisque

PX(B> = anfsccn(B): Z DPn

neN neN:x,€B
= > PX=u)=PXeB).
neN:xzn,€B

On voit clairement a 'aide de (2.14) que la donnée de (z,,p,)nen est équivalente a
celle de la fonction de répartition F'x, de méme qu’elle est équivalente & celle de la loi

17
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Px. En résumé, le comportement aléatoire de X est décrit de maniére équivalente par la
donnée de

~ (T, Pn)nen ou
— la fonction de répartition F'xy ou

— la loi Px.
La valeur moyenne de X pondérée par les probabilités de réalisation des événements
est appelée son espérance mathématique.

DEFINITION 3.5. Soit X une variable discréte de loi Px = Y -y Pnds

L’espérance

n*

mathématique de X est

EX = Z DT

neN

Pour que cette quantité soit définie correctement, il est nécessaire de supposer que

E|X]|:= an|xn| < 00

neN

c’est-a-dire que )\ Pn, est une série absolument convergente.

EXEMPLES 3.6.

(1)
(2)

La variable X de ’Exemple 3.3-(1) a pour loi Py = %1504-%514-%52. Son espérance
est EX = Ix0+3x1+1x2=1

La variable X de 'Exemple 3.3-(2) a pour loi Px =~ ., 27"d,. Son espérance
est EX =3 -, 27"n.

REMARQUES 3.7.

(1)

Lorsque X est une variable aléatoire positive, son espérance EX = )"\ pnoy,
est une série a termes positifs. Elle est donc toujours définie a condition de lui
donner la valeur +o00 lorsqu’elle est divergente.

En particulier, pour toute variable aléatoire, on a E|X| = Y _\ pnlza| et
l'on peut écrire E|X| sans précaution en tant que nombre dans [0, +oo] =
[0, +00[U{+00}. De plus, E|X| < oo signifie que la série ) _\ pntn, est ab-
solument convergente et donc que EX est bien défini.

On définit la loi d’une variable aléatoire discréte X a valeurs dans un ensemble
quelconque X exactement comme lorsque X C R, par la donnée de (x,,, pp)nen
ou les x, sont dans X. La loi de X est donnée par la Définition 3.1 : Py =
Y nen Pnda,. C'est une mesure de probabilité sur X muni de la tribu 2% de ses
parties.

En revanche, pour considérer EX, il faut pouvoir additionner les x et les mul-
tiplier par des poids 0 < p < 1. La notion d’espérance de X n’a donc de sens
que si X est un espace vectoriel. L’espérance de X est donnée par la Définition
3.5 :EX =) .y DPnt, € X sous réserve que cette série soit absolument conver-
gente, c’est-a-dire que la série & termes positifs E||X| = > -y pallzal < o0
soit convergente, ou || - || est une norme sur l'espace vectoriel X'. Un cas trés
important est celui de X = R? muni de le norme euclidienne ou de n’importe
quelle autre norme équivalente.
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Considérons la variable aléatoire Y = ¢(X), image de X par la fonction numérique
p:R—=R. Saloiest Py = /@m0y, 00 {ym;m € M} = {¢(x,);n € N} les y,, étant
tous distincts et

qm = P(Y:ym)
= P(p(X) =ym)

= > P(X = x)

z€X(Q): p(z)=ym

(3.8) = >

neN(m)

ou N(m) ={n € N : ¢(x,) = ym} est I'ensemble des indices des z,, dont I'image par ¢
est Y.

Notons que (N (m))menr constitue une partition de N. C’est-a-dire que les parties N(m)
sont disjointes : m # m’ = N(m) N N(m') = 0 (puisque les y,, sont tous distincts), et

(3.9) N=|]| N(m).

meM

THEOREME 3.10. On suppose que Y, - Pnlp(xy)| < 0o. Alors,

(3.11) Elp(X)] = ) pup(n).

neN

DEMONSTRATION. En notant ¥ = ¢(X) comme précédemment, nous avons

Elp(X)] = EY

< > Gmm
DD SN

meM neN(m)

9 Z Z Prip(n)

meM neN(m)

@ Z Pnp(n)

nenN

ou (a) est la définition de l'espérance, (b) provient de (3.8), (c) est une conséquence de
Ym = @(x,), Yn € N(m) et (d) vient de (3.9).

Bien évidemment, il faut s’assurer que toutes ces séries sont absolument convergentes.
Or, en reprenant le précédent calcul en remplagant Y par |Y| et donc ¢ par |¢], on voit
que c’est le cas sous notre hypothése : >\ pn|o(,)] < o0o. O

THEOREME 3.12. La loi de ¢(X) est Pyx)y = Y ,cn Prnlyp(an)-
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DEMONSTRATION. On reprend en la transposant la preuve du Théoréme 3.10. Ce

qui donne :
PSD(X) = PY = Z qm5y7n Z Z pn Ym
meM meM neN(m)
= D D Pabetwn) = D Pubiaten)
meM neN(m) nenN
qui est le résultat désiré. 0

Reprenons I'Exemple 3.3-(1), ¢’est-a-dire Px = (50 + 161 + 105 et considérons p(z) =
(r —1)2. On obtient alors P, x ):ié © +3 (5 -+ 5 51+ (50—1—151 150—|—151

En prenant N = {1,2,3}, 1 = 0,25 = 1 et x3 = 2 ainsi que M = {1 2} avec
yl—O—go(l)etyg—l—go() () ousobtenonsN()—{2}etN()—{13}
La formule (3.8) s’écrit ¢; = ZHEN(I) Pn =D2 €t @2 = D cn(2) Pn = P1+ D3, ce qui donne
Pp(X)=0)=1/2et P(p(X)=1)=1/44+1/4=1/2.

LEMME 3.13 (Positivité de I’espérance).

(1) Soit X wune variable positive : X > 0, c’est-a-dire X (w) > 0,Yw € Q. Alors,
0<EX < o0.

(2) Soient ¢ et 1p deux fonctions positives telles que 0 < ¢ < . Alors, 0 <
Elp(X)] < E[¢(X)] < occ.

DEMONSTRATION. e Preuve de (1). Nous avons x,, > 0 et p, > 0 pour tout n € N.
Donc EX =3\ pnTyn > 0.

e Preuve de (2). Pour tout n € N, 0 < p,p(z,) < ppt(z,). Donc les séries a termes posi-
tifs correspondantes sont ordonnées de facon similaire : 0 < E[p(X)] = >~y pa(zn) <

Y onen Path(z,) < E[(X)] < oo. O

THEOREME 3.14 (Linéarité de l'espérance). Soient p,1 : R — R deuz fonctions
numeériques telles que E|lp(X)| < 0o et E|p(X)| < co. Pour tous réels a,b, nous avons

Elap(X) + by(X)] = aElp(X)] + bE[(X)]
ou toutes les espérances sont bien définies.

DEMONSTRATION. Puisque |ap(X)+by(X)| < |a||o(X)|+|b]|(X)|, grace au Lemme
3.13-(2), nous avons E|ap(X) + b(X)| < |a| Elp(X)| + || E|(X)| < oo de sorte que
toutes les espérances sont bien définies. Grace au Théoréme 3.10,

Elap(X) +00(X)] = Y palag(en) + b ()]
= a Z pn%"(xn) +0 Z pnw(fﬂn)
= aE[p(X)] + bE[¢(X)]
ce qui achéve la preuve. O

THEOREME 3.15 (Croissance de Iespérance). Soient ¢ et @ deux fonctions numé-
riques telles que E|o(X)| < oo, E[(X)| < 0o et ¢ <b. Alors, E[p(X)] < E[p(X)].
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DEMONSTRATION. 1(X) — ¢(X) > 0, donc par linéarité et positivité de I'espérance
E[y(X)] = Elp(X)] = E[¢(X) = ¢(X)] = 0. B

REMARQUE 3.16.

En reprenant la Remarque 3.7-(2), on peut étendre les Théorémes 3.14 et 3.15 au
cas des variables aléatoires discrétes a valeurs dans un ensemble X quelconque,
en prenant des fonctions ¢, 1 : X — R, puisque ¢(X) et 1(X) sont des variables
aléatoires réelles.

3.2. Variables continues

Nous allons procéder par analogie avec les variables discretes. Nous gardons les nota-
tions introduites a la Définition 2.15, en particulier la densité fx de la loi de la variable
aléatoire continue X est supposée continue par morceaux.

DEFINITION 3.17.

(1) On note Cx l’ensemble des fonctions de ¢ : R — R qui sont continues par
morceaux et telles que l'intégrale généralisée [, |¢(x)|fx(x) dx soit convergente,
cest-a-dire [, [o(@)]fx(x) dz < oc.

(2) Soit ¢ € Cx. L’espérance mathématique de la variable aléatoire ¢(X) est définie
par

(3.15) Bo(X) i= [ pla)fx(a)da

— Une justification rigoureuse de cette définition peut étre obtenue en montrant
qu’elle est I'extension naturelle de la Définition 3.5 de I'espérance d’une variable
discréte.

— En tenant compte de (2.20), lorsqu’on se souvient de la construction de l'intégrale
de Riemann comme limite de sommes de Darboux, on voit que cette définition est
analogue au résultat obtenu en (3.11) pour les variables discrétes.

— Du fait que fx et ¢ sont continues par morceaux, il en est de méme pour leur
produit ¢ fx qui, par conséquent, est localement intégrable au sens de Riemann.

REMARQUES 3.19.

(1) Si ¢ > 0 est une fonction continue par morceaux et positive, on peut définir
lespérance (3 18) en posant E¢(X) = +oo lorsque l'intégrale généralisée posi-
tive [, () fx(x) dx est divergente.

En partlcuher pour toute fonction ¢ continue par morceaux, on note E|¢(X)| =
Je le(@)| fx(2) dx € [0, 00].

(2) L’hypothese d’intégrabilité E|p(X)| = [, |¢(z)|fx(z) dz < co exprime que I'in-

tégrale généralisée [, p(z)fx(x) dx est absolument convergente.
EXEMPLE 3.20. Si X est 'angle de la fleche de 'Exemple 2.17 : fx(x) = Ly 2q(x)/(27)
de sorte que E(X) =
REMARQUE 3.21. On peut se demander ce que signifie la valeur moyenne de 1’angle
EX = 7. En effet, si 'on avait choisi de coder ’angle dans [—, 7[, on aurait obtenu EX =

0 pour la méme expérience. En revanche, les coordonnées cartésiennes (cos X, sin X) sur
le cercle trigonométrique sont indépendantes du choix de l'origine des angles.

0 5o dr = T.
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(cos X, sin X)

On définit E(cos X,sin X) = (E[cos X], E[sin X]) et on obtient la direction moyenne
2 2

E(cos X, sin X) = (0,0) puisque E[cos X] = 5= [7 cosz dx = 0 et E[sin X| = 5= [ sinz dz =

0. Ce qui signifie bien qu’aucune direction n’est privilégiée.

THEOREME 3.22 (Linéarité de l'espérance). L’ensemble Cx est un sous-espace vec-
toriel de ’espace des fonctions numériques.
Pour tous o, € Cx et tous réels a,b, nous avons

Elap(X) + by (X)] = aE[p(X)] + bE[¢(X)].

DEMONSTRATION. Soient ¢ et @ deux fonctions continues par morceaux. L’ensemble
des points de discontinuité de ¢ + v est inclus dans la réunion des ensembles de points
de discontinuité de ¢ et ¥ et une réunion finie de points isolés reste un ensemble de
points isolés. Donc ¢ + 1 est continue par morceaux. Il en est de méme pour ap pour
tout a € R.

D’autre part, [, |ap(z)|fx(x) dz = |a| [; [o(2)] fx () dx < oo. Ce qui prouve que Cx est
un espace vectoriel.

La linéarité de I'intégrale nous assure de

Elap(X) + by(X)] = / lap(a) + bib()) () de

= dr +b d
o [ pla)sxta)de b [ o) (o) da
= aE[p(X)] + bE[¢(X)],
qui est le résultat annoncé. O

THEOREME 3.23 (Croissance de I'espérance).

(1) Soient ¢, > 0 deux fonctions positives continues par morceaux telles que 0 <
o < . Alors la Remarque 3.19-(1) nous assure du sens des quantités E[p(X)]
et E[(X)] et nous avons 0 < E[p(X)] < E[¢(X)] < co.

(2) Soient @, € Cx telles que p < 1, alors Ejp(X)] < E[(X)].

DEMONSTRATION. Ces résultats sont des conséquences immmédiates des propriétés
de croissance des intégrales généralisées. 0

Par analogie avec la relation (3.4), nous introduisons la
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DEFINITION 3.24. La loi de X est la mesure de probabilité sur R
Px(dz) := fx(x)dx

qui est définie par

b .
Px(B) :=P(X € B) = / Fx(x) da " / Fx(z)da
a B
pour tout intervalle B = (a,b) C R.

3.3. Une notation commune

Nous venons de voir que les résultats de croissance (Théorémes 3.15 et 3.23) et de
linéarité (Théorémes 3.14 et 3.22) s’expriment de fagon analogue pour les variables aléa-
toires discrétes et continues. C’est 'indice qu'’il existe une théorie générale qui englobe
ces deux situations. Il s’agit de la théorie de 'intégration de Lebesgue que nous n’aborde-
rons pas dans ce cours. En revanche, nous allons introduire des notations issues de cette
théorie qui permettront de traiter simultanément ces deux types de variables aléatoires.
Les principaux résultats de cette théorie sont collectés & I’Annexe B.

On note

/RsO(:L‘) Px(dx) Z/Rdex = Ep(X)

(1) la quantité

/RsodPx = > @l@n)pn

nenN
lorsque X est discréte de loi Py =)\ Pnds, ou bien

/RSOCZPXZ/RSO(@fX(I)dx

lorsque X est continue de loi Px(dx) = fx(z)dx.

(2) la quantité

Nous avons montré aux Théorémes 3.15, 3.23, 3.14 et 3.22 que, pour ¢ et ¥ dans une
bonne classe de fonctions, les propriétés suivantes sont satisfaites.
— Linéarité. Pour tous a,b € R,

(3.25) Elap(X) + bip(X)] = aEp(X) + bEp(X)

ou avec notre nouvelle notation :
/[ago—i—bw]dPX :a/godPX—i-b/z/JdPX
R R R
— Croissance. Si ¢ < 1), alors
(3.26) Ep(X) < Ey(X)
ou avec notre nouvelle notation :

/sodPXs/deX.
R R

— Normalisation. On note 1 la fonction constante égale a 1.

(3.27) E(1) = / dPyx = Px(R) = P(Q) = 1.
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3.4. Fonction indicatrice d’ensemble
On introduit maintenant une fonction tres pratique en calcul des probabilités.

DEFINITION 3.28 (Fonction indicatrice). Soit V' un ensemble quelconque et W C V
une partie de V. La fonction indicatrice de W est

1 siveW
L (v) '_{O sinon  vEV.

REMARQUES 3.29.
(1) Notons que 1y (v) = 6,(W).

1 si X(w) €eB

(2) Pour tout B C R, 1xepy(w) = 1p(X(w)) = { 0 sinon

PROPOSITION 3.30.
(1) Pour B C R, E[1yxepy| = E[15(X)] = P(X € B) = Px(B).
(2) Pour tout réel ¢, E(clg) = c.

On notera souvent la variable aléatoire égale a la constante ¢ : c1g = ¢; donc E(c) = c.
Une telle variable aléatoire est dite déterministe.

DEMONSTRATION. e Preuve de (1). Commengons par le cas ou X est discréte. Gréace
au Théoréme 3.10, E[1{xcpy| = E[1p(X)] =
= Znean]‘B<xn) = ZnGN;xneBpn = P(X € B) = PX(B)

Lorsque X est continue, E[1{xcpy] = E[1p5(X)] = [, 15(2) fx(z)dz = [, fx(z)dx =
Px(B).

e Preuve de (2). Avec (3.27) : E(c) = cE(1) = ¢x 1. O

3.5. Variance et écart-type

Pour mesurer la moyenne des fluctuations de X autour de sa moyenne p := EX, on
peut prendre la moyenne de Iécart a la moyenne : X — p. C’est-a-dire E(X — u). Mais on
voit que E(X —pu) = EX—Eu = p—p = 0. En moyenne, les écarts par défaut compensent
exactement les écarts par exces. Une idée naturelle est donc de considérer la moyenne de
I'écart absolu a la moyenne : E|X — u|. Mais personne n’aime beaucoup travailler avec les
valeurs absolues qui demandent des découpages fastidieux. C’est la raison pour laquelle
on préfére considérer la moyenne du carré de 1'écart a la moyenne : E[(X — u)?]. Si on
change d’échelle de mesure, par exemple si X est une longueur exprimée en métres et X’
la méme longueur exprimée en millimétres, on a X’ = 1000X d’ou E[(X' — E(X"))?] =
E[(1000X — 1000E(X))?] = 1000?E[(X —EX)?|. Ces quantités différent du facteur 1000
et s’expriment comme des longueurs au carré. Il est donc pertinent de considérer la
quantité y/E[(X — p)?] qui conserve les bonnes unités et les facteurs d’échelle.

DEFINITION 3.31. On suppose que E|X| < oo de sorte que EX est bien défini. La
variance de X est

Var(X) := E[(X —EX)? € [0, +o]

o(X) :=+/Var(X) € [0, +00].

Son écart-type est
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On remarque qu’en tant qu’espérance de la variable positive (X — u)?, Var(X) est
un nombre positif.
Il est pratique lors de certains calculs d’utiliser les formules suivantes.

PROPOSITION 3.32. Soit X tel que E|X| < co. Nous avons
(1) Var(X) = E(X?) — (EX)2.
(2) Var(aX) = a*Var(X) et o(aX) = |a|lo(X), pour tout réel a # 0, avec la conven-
tion a?x 0o = |a|x 0o = oo
Bien sar, sia =0, Var(0) = ¢(0) = 0.
(3) Var(X + ¢) = Var(X) pour tout réel c.
(4) Var(c) = 0 pour tout réel c.

DEMONSTRATION. e Preuve de (1). Grace a la linéarité de l'espérance (3.25) et a la
Proposition 3.30-(2), en posant u = EX, Var(X) = E[(X — p)?] = E[X? — 2uX + p?] =
E(X?) - 2uEX + E(u?) = E(X?) — 2u® + p? = B(X?) — p?.

e Preuve de (2). A nouveau, par la linéarité de l'espérance, Var(aX) = E[(aX — ap)?] =
E[a(X — 1] = ®E[(X — u)?] = a*Var(X).

e Preuve de (3). Var(X +¢) = E[{(X +¢) —E(X + ¢)})| = E[{X + ¢ — (EX + ¢)}?] =
E{X — EX}? = Var(X).

e Preuve de (4). Var(c) = Var(c — ¢) = Var(0) = 0. O

3.6. Moments
Commengons par la définition des moments d’une variable aléatoire.

DEFINITION 3.33. Soit X une variable aléatoire réelle.

— Si X > 0 est une variable aléatoire positive, pour tout réel p > 0, on appelle
moment d’ordre p de X la quantité E[X?] € [0, o0].

— Dans le cas général o X est une variable aléatoire réelle, pour tout entier p > 1
tel que E[| X |P] < oo, on appelle moment d’ordre p de la variable aléatoire réelle X
la quantité E(XP?).

On rappelle que les puissances non-entiéres ne sont définies que pour les nombres
positifs par z? := exp(pln(z)), x > 0,p € R et 0P =0 si p > 0.

PROPOSITION 3.34 (Comparaison des moments). On se donne deux réels 0 < p < q.
Soit X > 0 une variable aléatoire positive : E[X 7] < oo = E[X?] < 0.
Pour toute variable aléatoire réelle X : E[|X|7] < oo = E[| X 7] < oc.

DEMONSTRATION. Soit X > 0. On utilise les fonctions indicatrices 1y, voir la Défi-
nition 3.28, en remarquant que 1 = 1y + Lyye :

E[XP] = IE[(l{xa} + 1{X21}>Xp]
E[l{X<1}Xp] + E[l{XZH,Xp}

—
S
N

(0)
< 1+E[1{x>13XY
(c)
< 1+ E[X < o0.
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L’égalité (a) est une application de la linéarité de l'espérance. L’inégalité (b) vient de
lio<zenyz? < 1et 2P < 29 lorsque > 1 et 0 < p < ¢. On obtient l'inégalité (c) en
remarquant que lgp>q327 < 29 lorsque > 0. On a invoqué (3.26) pour des fonctions
positives pour ces deux inégalités.

La derniére assertion de la proposition s’en déduit immédiatement. O

COROLLAIRE 3.35. i E(X?) < oo, alors E|X| < oo.
De plus, Var(X) < oo si et seulement si E(X?) < oo.

DEMONSTRATION. La premiére assertion est un cas particulier de la Proposition 3.34
et la seconde s’en déduit a 'aide de la Proposition 3.32-(1). O

3.7. Fonctions d’une variable aléatoire

Si ¢ est une fonction numérique suffisamment réguliére et X est une variable aléatoire,
alors Y = (X) est aussi une variable aléatoire. Pour tout intervalle B C R, notons
0 1(B) :={zx € R; p(x) € B}.

EXERCICE 3.36. Montrer que si ¢ est continue par morceaux, ¢~ !(B) est une réunion

dénombrable d’intervalles.

Grace a I'exercice précédent et a 'identité (3.46) plus bas, on peut considérer Px (¢~ 1(B))
et écrire

Py(B) = P(Y € B)
= P(p(X) € B)
= P(X € ¢7(B))
= Px(¢(B))

ce qui spécifie la loi de Y. Avec B = | | ., I,, ot les I,, sont des intervalles disjoints, nous
avons

(3.37) P(X € B)=)» P(X€l,).
n>1

(Notons que si B est la réunion finie de N intervalles, on peut toujours prendre I,, = ()
pour n > N). Or cette quantité est entiérement déterminée par la fonction de répartition
Fx de X comme le montre la Proposition 2.9.

Par exemple, lorsque ¢ est une application strictement monotone son application
réciproque ¢! est bien définie et en prenant B =| — oo, y] nous obtenons lorsque ¢ est
strictement croissante

Fy(y) = Ple(X) <y)
= P(X <9 '(y)
= Fx(¢™'()

et lorsque ¢ est strictement décroissante

Fy(y) = Ple(X) <y)
= P(X >0 '(y)
= 1-Fx((e™'(¥))

Donnons quelques exemples d’application de cette méthode.

~—
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(a) Soit X une variable continue de densité fx continue par morceaux. On cherche la loi
de Y = aX + b avec a et b réels.
Remarquons avant tout que lorsque a = 0, Y vaut b quoiqu’il arrive, sa loi est donc
Py = §,. On note en passant que ceci nous donne un exemple de ¢(X) discréte alors
que X est continue.

Prenons maintenant a # 0 et calculons la fonction de répartition de Y = a X + b.
~Sia>0,Fy(y) =PlaX+b<y)=PX <(y—0b)/a) = Fx((y —b)/a). Ce qui

donne fy(y) = Fy(y) = fx((y —b)/a)/a.
- Sia<0, Fy(y) =PlaX+b<y)=P(X >(y—0)/a) =1—Fx((y—b)/a). Ce
qui donne fy(y) = Fy(y) = —fx((y = b)/a)/a.

Finalement, nous obtenons dans les deux cas

(3.38) Frly) = Jx((y —b)/a)

, yeR
|a

(b) Soit X une variable aléatoire quelconque, la fonction de répartition Fy de Y = X2
s’exprime en fonction de Fx de la maniére suivante. Pour tout y > 0,

Fely) = B(X*<y)
= P(-Vi<X <0
= Fx(vB) - Fx((~v3))

alors que pour tout y < 0, Fy(y) = 0.

En particulier, si X admet une densité fx continue par morceaux, F'x est déri-
vable partout sauf en un nombre fini de points et F% = fx. Par conséquent Y admet
la densité (définie partout sauf en un nombre fini de points)

Ix(VY) + Ix(=vY)
EXEMPLE 3.40. Si X est langle de la fleche de 'Exemple 2.17 et Y = X2,
Ix () = 1p2x(x)/(27) et avec (3.39) : fy(y) = 12/ (47/y) de sorte que

27 .2
E(X?) :/ T g = A2
0

(3.39) fr(y) = F(y) = 10

4
E(Y) = VI dy = =
(Y) A U

On constate bien évidemment que E(Y) = E(X?).

(c) Les choses sont plus simples si 'on considére Z = X3. En effet, pour tout z € R,
nous avons
Fz(2) =P(X? < 2) = P(X < 2Y3) = Fx(2Y9).
La simplicité de ce calcul vient du fait que 22 est injective, alors que la non-injectivité
de 22 créait quelques difficultés dans I’exemple précédent. Si X admet une fonction
de densité continue par morceaux, Z = X? admet la fonction de densité
(213
fz(2) = % :
Notons que cette fonction n’est pas définie en z = 0, mais ¢a n’est pas un pro-
bléme puisque des fonctions de densité égales sauf sur un ensemble de longueur nulle
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(Lebesgue-presque partout) correspondent a la méme loi, voir la Proposition 3.43
plus bas.

3.8. Egalité en loi
Cette notion est spécifique a la théorie des probabilités.
DEFINITION 3.41 (Egalité en loi). Deux variables aléatoires X; et X, construites
respectivement sur (Q1,P1) et (Qq,Ps) sont égales en loi si et seulement si elles ont la

. . c
méme loi : Py, = Pyx,. On note dans ce cas : X; = Xs.

Cela ne signifie pas que
(1) Xy = X5 ni méme que
(2) P(X; = X5) = 1, méme lorsque (,P1) = (29, P5).
Bien str, (1) implique (2) qui implique ’égalité en loi.
L’égalité en loi est la notion la plus faible permettant d’identifier deux phénomeénes
aléatoires.
EXEMPLES 3.42.

(1) On joue deux fois de suite a pile ou face de sorte que Q4 = {pp,pf, fp, ff} et
Py = 3 (6pp+0pr+07p+0s7). On considere X, défini par : Xy (pp) = X1(pf) = =3

et Xi(fp) = Xu(ff) = V5.
On lance un dé de sorte que Qs = {a,b,c,d, e, f} avec Py = %((5a + 0 + 0. +
dq + 0c + 07). On considére X, défini par Xs(a) = Xa(b) = Xa(c) = —3 et
Xo(d) = Xa(e) = Xa(f) = V5.
On voit que Py, = Px, = 1(0_3 + 0 ), cest-a-dire X, £X,.

(2) Soit X la variable de ’'Exemple 2.6 dont la loi est }1(50 + %(51 + }1(52. Montrer que
X£2-x

(3) Soit X une variable aléatoire continue dont la densité est une fonction paire;

fx(=z) = fx(x),Vz. Alors nous avons X £ _X. En effet, pour tout réel y nous
avons

Fox(y) = P(X>-—y)

. fx(z)dx
(@) /ZO Fe(—2)dz

/:) fx(z)dz
Fx(y)

ou l'égalité (a) s’obtient avec le changement de variable z = —z et (b) est une
conséquence de la parité de fx.

—
S
N

—~
=
=

Nous avons déja remarqué que les données de Fx et Px sont équivalentes. On en
déduit le résultat suivant.
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PROPOSITION 3.43. Deux variables aléatoires X, et Xy construites respectivement
sur (Qq,P1) et (Qq,Py) sont égales en loi si et seulement si elles ont la méme fonction
de répartition :

Fx, = Fx,.

Si elles sont discretes, cela signifie qu’il existe une suite (éventuellement finie) (T, )nen
de réels distincts telle que Y, .y P1(Xy =x,) =1 et

]P)l(Xl :$n) :PQ(XQ :JTn), VYnéeN

Si elles sont continues, cela signifie que leurs densités ont le méme ensemble de points
de discontinuité (Cf. les Définitions 2.15 et 3.17) et qu’elles sont égales partout sauf
éventuellement sur cet ensemble de "longueur nulle”. On dit alors qu’elles sont égales
Lebesgue-presque partout et on note

fx, = fx,, Lebesgue-p.p.

3.9. Définition abstraite de la loi d’une variable aléatoire

Spécifier complétement le comportement d’une variable aléatoire X devrait permettre
en principe d’évaluer les quantités P(X € B) pour toute partie B de R. Mais cela n’est
possible que si 'ensemble { X € B} est un événement, c’est-a-dire un élément de la tribu
A.

Lorsque X est une variable discréte, on peut prendre Q dénombrable et A = 29 de
sorte que pour tout B C R, {X € B} est un événement.

Lorsque X est une variable aléatoire continue, comme nous ’avons déja évoqué a la
Remarque 2.24, les choses se compliquent du point de vue mathématique : on ne peut
pas prendre n’importe quelle partie B. Les "bonnes" parties B de R sont celles de la
tribu de Borel.

DEFINITION 3.44. La tribu de Borel de R est la plus petite tribu contenant I’ensemble
7 de tous les intervalles de R. On la notera B.

EXERCICE 3.45. Montrer que si (A,, v € I') est une collection quelconque de tribus
sur le méme ensemble €2, alors ’ensemble ﬂver A, constitué des parties de 0 qui se
trouvent dans toutes les tribus A, lorsque 7 parcourt I’ensemble d’indices I', est aussi
une tribu.

La plus petite tribu contenant I’ensemble Z de tous les intervalles de R est par dé-
finition I'intersection de toutes les tribus contenant Z. Cette intersection existe puisque
2R est une tribu qui contient Z, de plus en tant qu’intersection de tribus, c’est une tribu
d’aprés l'exercice précédent. Ceci justifie la définition de la tribu de Borel B.

On peut montrer, mais ¢a n’est pas simple, qu’il existe des parties de R qui ne sont
pas dans B.

On retiendra que la tribu de Borel contient toutes les réunions dénombrables d’in-
tervalles.
Avec B = | -, I, ot les I, sont des intervalles disjoints, nous avons

(3.46) P(X € B)=)» P(X €1l,).

n>1
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(Notons que si B est la réunion finie de N intervalles, on peut toujours prendre I,, = ()
pour n > N). Or cette quantité est entiérement déterminée par la fonction de répartition
Fx de X comme le montre la Proposition 2.9.

DEFINITION 3.47. La loi de la variable aléatoire (quelconque) X est la mesure de
probabilité Px sur (R, B) définie par

Px(B)=P(X € B), BeB.

La connaissance de Py sur tous les intervalles de la forme |a, b] permet de retrouver
Fx(z) =P(X €] — 00, 2]) = lim,, oo Px(] — n,z]), x € R.
Réciproquement, si on se donne Fx, grace a la Proposition 2.9, Px est connue sur tous les
intervalles et par suite, grace a (3.46), sur toutes les réunions dénombrables d’intervalles.
On peut montrer, mais c’est assez délicat et dépasse le niveau de ce cours, qu’en fait Fx
spécifie Px complétement sur B.

En résumé, Fx et Px encodent la méme information sur le comportement aléatoire
de X.

De plus, Py n’est autre que I'image sur (R, B) de la mesure de probabilité P sur
(2, A) par application X :

Px = X#P.

La notion de mesure image est présentée a I’Annexe ?77.



CHAPITRE 4

Variables aléatoires usuelles

Nous présentons ici les lois des variables aléatoires les plus usitées. Certaines, comme
la loi normale, sont extrémement importantes tant sur le plan théorique que pratique
(utilisation trés fréquente en statistique).

4.1. Exemples de variables aléatoires discrétes

Nous présentons dans cette section les lois de Bernoulli, binomiales, de Poisson et
géométriques.

Loi de Bernoulli. Il s’agit d'une des lois les plus simples. La variable aléatoire X
suit la loi de Bernoulli B(p) de paramétre 0 < p < 1 si sa loi est

Px = qdp + pd;.

Ceci signifie que X peut prendre les valeurs 0 et 1 avec les probabilités respectives
q = 1—p et p. On obtient immeédiatement que EX = q0+pl = p et que puisque X? = X
sous cette loi, E(X?) = p. Par conséquent, VarX = p — p* = pq.

Une variante immédiate de cette loi est Py = qd, + pd, avec a,b réels. On a immé-
diatement EY = ga + pb et du fait que Y = a + (b — a)X avec X ~ B(p), Vary =
(b—a)?*VarX = (b — a)?pq, grace a la Proposition 3.32.

Loi binomiale. La variable aléatoire X suit la loi binomiale B(n,p) de paramétres
n>1et0<p<1sisa loiest

Px = Z <Z> P "o
k=0
ol comme précédemment on pose ¢ = 1 — p. Ceci signifie que X peut prendre les valeurs
0,1,...,navec P(X =k) = (Z) p¥q"* pour 0 < k < n. On constate qu'avec n = 1, on
retrouve B(1,p) = B(p).
EXERCICE 4.1.
(a) Vérifier que Px est une mesure de probabilité.

(b) Montrer que EX = np et VarX = npq.

31
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SOLUTION. Nous donnons seulement la solution de EX = np. Nous avons

n! k n—k
X = D

= n—1)! o
B U |

1=

S

3
[~]=
R
3

=~ |
N~
ﬁt\‘

R

3

L

L

—
=

= mwpp+q)"
ou l'on a effectué le changement de variable [ = k—1 en (a) (on notera que n—k = n—1—1)
et utilisé la formule du binéme de Newton en (b).

Une indication pour calculer VarX : commencer par calculer E[X (X — 1)] en procédant
dans le méme esprit que ce que nous venons de faire. O

Loi géométrique. La variable aléatoire X suit la loi géométrique G(p) de paramétre
0 <p<1sisa loiest

Py = Z ¢" ' pdy

k=1
ol comme précédemment on pose ¢ = 1 — p. Ceci signifie que X peut prendre les valeurs
1,2,... avec P(X = k) = ¢"*!p pour k > 1.

EXERCICE 4.2.

(a) Vérifier que Py est une mesure de probabilité.
(b) Montrer que EX = 1/p.

SOLUTION. On pose ¢(q) = > pey¢*, 0 < ¢ < 1. On sait que
p(g) = limy oo Do ¢" = lim,oo(1 = ¢"*) /(1 —¢q) = 1/(1 - q).
De ce fait, Px(N) =p> 07 ¢ ' =p> 1o,¢" =p/(1 —q) =1, ce qui montre (a).
Grace au Théoréme de dérivation sous le signe somme B.3, en dérivant terme a terme la

série Y p-, ¢* on obtient Y7, k¢" ' = ¢/(q) et puisque ¢'(q) = d%(l/(l—q)) =1/(1—q)?,
on voit que EX =77 k¢*'p=p/(1—q)* =1/p. O

Loi de Poisson. La variable aléatoire X suit la loi de Poisson P(\) de paramétre
A > 0 si sa loi est

k=0

Ceci signifie que X peut prendre les valeurs 0,1,2,... avec P(X = k) = e *\*/k! pour

k > 0 avec la conventions habituelles A\’ = 1 et 0! = 1 de sorte que P(X = 0) = e~
EXERCICE 4.3.

(a) Vérifier que Py est une mesure de probabilité.
(b) Montrer que EX = VarX = \.
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SOLUTION. Commencons par rappeler que pour tout réel x

(4.4) e _Z z

On en déduit immédiatement que Py (N) = e 37, A /kl = e7rer = 1.
Montrons que EX = X. Nous avons

EX = Zke*A Zke Z

k>0 ! k>1

ou 'on a effectué le changement de variable [ = k — 1 et utilisé la formule (4.4).
Calculons de fagon similaire

AP A
EX(X—1)] = Y k(k—1)e AH = k(k—1)e AH
k>0 k>2
2 A AF2
p— A -
; (k: —2)!
220 2,-A A 2
- Z I =A\e =A
1>0
On en déduit que VarX = E[X(X — 1)] + EX — (EX)2 = X2+ X = \2 = )\ 0

EXERCICE 4.5. En vous inpirant de la solution précédente, montrer que pour tout
entier k > 1, E[X(X —1)--- (X —k+1)] = A~

4.2. Exemples de variables aléatoires continues

Nous présentons dans cette section les lois uniformes, exponentielles, normales, Gamma
et de Cauchy.

Loi uniforme. Nous avons déja rencontré la variable U de loi uniforme sur [0, 1].
Ses fonctions de répartition et de densité sont

0 st u<0
Fy(u)=9q u si 0<u<1 et fy(u)=1p<u<t)y, u€eER
1 si u>1
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z z

Sy

1w 1
Une variable aléatoire X suit une loi uniforme sur [a, 0] si elle a la méme loi (c’est-a-dire

la méme fonction de répartition) que a + (b — a)U. Ses fonctions de répartition et de
densité (voir (3.38)) sont

0 si x<a 1

Fla)={ (z—a)/(b—a) si a<z<b et f(z)=—""220 zeR.
1 si x>0 b—a

o z
1
Yo-a)

0 a b = a b x

z=F(xr) 0 2= [(z)

On note U(a,b) la loi uniforme sur [a, b]. Nous avons donc
(4.6) a+ (b—a)U ~U(a,b)
lorsque U ~ U(0,1).
EXERCICE 4.7. Vérifier que E(X) = (a +0)/2 et que Var(X) = (b — a)?/12.

Loi exponentielle. Une variable aléatoire X suit la loi exponentielle de parameétre
A, notée E(N), si ses fonction de répartition et fonction de densité sont

0 si x <0 e
F('I):{ 1_67)@ si ZB;O et f<=75>:1($20)>\6 A , z € R.
z z
A
1 _______________
0 T T
z=F(x) z = f(z)

EXERCICE 4.8. Vérifier que E(X) = 1/) et que Var(X) = 1/\%
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Cette variable aléatoire sert souvent a modéliser des temps d’attente. Elle intervient
de facon fondamentale dans la construction des processus de Markov a temps continu que
I'on rencontre lors de la modélisation de systéme de files d’attente (réseaux informatiques,
guichets, etc. . .).

Loi normale. C’est probablement la loi continue la plus importante. On 'appelle
aussi loi de Gauss ou loi gaussienne. On dit qu’une variable aléatoire Z suit une loi
normale centrée réduite si sa fonction de densité est

z

1 2
fz(z) = exp (—5> , z€R

V2r

Cette loi est notée N (0,1).

1/v2r

2 -1 0 1 2 2
Représentation graphique de v = fz(2)

Il n’existe pas d’expression analytique de la fonction de répartition de Z. On la note
traditionnellement

(4.9) Py) =P(Z <y) = /_yoo \/12_7Texp <—%2> dz.

Toutefois, on peut vérifier que lim,_, ., ® fR fz(z)dz = 1. Pour cela posons
I = fR fz(2)dz. Nous avons par un simple jeu d’ecrlture sur les variables d’intégration

ro- / fatwyds [ getwdy= [ o) fat) dndy

/é e T2V dudy = —//R @409/ qgdy

= / 2 rdrd) = — (/ d@) </0 e " /2rdr)
= /0 e “du

1

—
S]
N

—
o
=
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ot nous avons effectué
— en (a) : le changement de variables en coordonnées polaires : x = rcosf, y = rsinf
avecr > 0 et 0 < 0 < 2m de sorte que 1?2 = 2% 4 y? et dxdy est remplacé par rdrdd;
—en (b) : le changement de variable u = r2/2.
Puisque I > 0 et I? = 1, nous venons de montrer que

1 2
4.10 — [ e /zdz:/ z)dz = 1.
(4.10) =~ [ 1202)
EXERCICE 4.11. Vérifier que E(Z) = 0 et que Var(Z) = 1.

SOLUTION. L’intégrale EZ = [ zfz(z)dz est nulle car la fonction z — zf;(2) est
impaire et intégrable. Donc EZ = 0 et VarZ = EZ? = \/Lz? fR 22¢7%"/2 dz. On effectue une

intégration par parties [wv' = [uv] — [w'v avec u/(2) = ze7*/? et v(z) = 2. Nous avons
u(z) = —e /2 et v/(2) = 1, de sorte que [ 22e % /2 dz = [—ze #I + [ e /2 dz =
0+ V27 [, fz(z) dz. On en déduit avec (4.10) que EZ? = 1. O

EXERCICE 4.12. Montrer que —Z £z

SOLUTION. Pour tout réel y, F_z(y) =P(—Z < y) =P(Z > —y) = ff; fz(2)dz =
f_oz fz(=2)dz = — fyfoo fz(x)dv = [Y_ fz(x)dz = Fz(y) ou nous avons utilisé succes-
sivement la parité de fz : fz(2) = fz(—=2) et le changement de variable x = —z. Par
conséquent Z et —Z ont la méme fonction de répartition. 0

DEFINITION 4.13. De maniére générale, une variable aléatoire X est dite centrée si
E(X) = 0 et réduite si Var(X) = 1.

Une variable aléatoire X suit une loi normale de paramétres u et 02 (u € R, o > 0)
notée N (u, 0?), si elle peut s’écrire sous la forme

(4.14) X=p+oZ
ol Z suit une loi N'(0,1). Cette loi est notée N (p, 0?).
EXERCICE 4.15. Vérifier que E(X) = p et que Var(X) = o2

La fonction de répartition de X est
Fz) = PX<2)=Pu+ocZ<z)=P(Z < (z—p)/o)
= O((x —p)/o),

de sorte qu'avec f(z) = F’(z), nous obtenons 'expression de la fonction de densité de
X suivante :

1 (z — p)?
4.16 x) = exp| ——=—1], zeR.
(416 ) = oo (-
La figure suivante donne la représentation graphique des densités de probabilité des lois
N(p,0%) et N(p,03) avec 0 < 01 < 9. On constate que ces densités sont symétriques
par rapport & la moyenne p et que les aires situées entre les courbes et ’axe des = sont
les mémes pour les deux densités. De plus, la densité de N (u,0?) est plus concentrée

autour de la moyenne u que celle de N'(u, 03).
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)

H ,U'IFU1I X
[ P!

L’exercice suivant permet de donner une approximation de la fonction de répartition
® définie en (4.9) bien qu’on n’en connaisse pas d’expression analytique exacte.

EXERCICE 4.17. Pour tout y > 0, nous avons

e—y2/2
(a) P(Z 2 y) =1—P(y) < <7 et

267y2/2
(b) P(12] 2 y) < =5

YV 2w

SOLUTION. En remarquant que z/y > 1 pour tout z > y, nous avons

>~ 1 2
P(Z < = e %12 dx
(Z <vy) /y N

[e.9]

1 E —22/2

1 /°° 2
———e dz = —— ze % dz
y V2mY yv2r Jy

B 1 [_ _22/2]00 B e~ v*/2

e =
yv2m Y yv2m
ce qui prouve (a). On en déduit (b) en remarquant que P(|Z| > y) = P(Z < —y)+P(Z >
y) =P(—Z > y)+P(Z > y) = 2P(Z > y) puisque —Z a la méme loi que Z, voir I’Exercice
4.12. 0

IN

Notons que les majorations de I'exercice précédent sont trés mauvaises pour y proche
de 0, puisqu’elles sont en 1/y au voisinage zéro. En revanche ces estimées s’améliorent
beaucoup pour des grandes valeurs de y. On trouve P(|Z| > 3) < 0,0533 ainsi que
P(|Z| > 4) < 0,0021, P(]Z| > 5) < 3-107° et P(|Z] > 6) < 2-107". En pratique,
c’est-a-~dire plus de 997 fois sur 1000, Z prend ses valeurs entre -4 et 4.






CHAPITRE 5

Fonctions génératrices et caractéristiques

Nous allons présenter des méthodes efficaces pour calculer les moments de certaines
lois, ainsi que les lois de sommes de variables indépendantes. Nous commencons par étu-
dier les variables aléatoires a valeurs entiéres, puis les variables générales.

Rappelons que le moment d’ordre k& de la variable aléatoire X est E(X*), voir la Défi-
nition 3.33. Les principaux résultats abstraits concernant les moments sont présentés en
Chapitre 13.

Dans ce qui suit on notera f*) la dérivée d’ordre k de la fonction f.

5.1. Le cas des variables entiéres

On dit qu'une variable aléatoire X est entiere si elle prend ses valeurs dans ’ensemble
N des nombres entiers. sa loi est donc de la forme Px = ano Pnon. C'est le cas des
variables binomiales, géométriques et de Poisson.

DEFINITION 5.1. Soit X une variable entiére. Sa fonction génératrice est définie pour
tous 0 < ¢t < 1 par Gx(t) = E(t¥).

On remarque que puisque 0 <t < 1 et X est entier, nous avons 0 < tX <1 de sorte
que 0 < E(t¥) < 1 est bien défini. En notant p, = P(X = n), n € N, nous obtenons bien
str
(5.2) Gx(t)=> put"=po+ > put", 0<t<1

n>0 n>1
avec Gx(1) =E(1) =1 et Gx(0) = po. Cette derniére égalité est une convention puisque
Gx(0) = po0° : nous avons choisi de prendre 0° = 1. Cette convention est justifice du
fait qu’elle garantit la continuité de Gx(t) en ¢t = 0. En effet, grace au Théoréme B.2,
puisque 0 < % <1 est borné, limy o Gx(t) = po + limyo Y., Put™ = po + >_,,—; 0 = po.

PROPOSITION 5.3. Pour tout entier k > 1 tel que E(X*) < oo, nous avons
EX(X 1) (X —k+1]=G6P1)
ol Gg?)(l) est la dérivée a gauche d’ordre k de Gx en 1.

On remarque que puisque X ne prend que des valeurs entiéres, X(X — 1)--- (X —
k+1)=0si X €{0,...,k—1} de sorte que X(X —1)--- (X —k+1) >0.
On appelle E[X(X —1)--- (X — k + 1)] le k-iétme moment factoriel de X.

DEMONSTRATION. Du fait que E(X*) < oo, nous avons aussi grace a la Proposition
3.34 : E(X!) < oo pour tous 1 < [ < k. Ce qui implique clairement que E[X (X —
1)--- (X —1+1)] <oopourtous 1 <<k
Commengons par le cas k£ = 1 sous 'hypothése EX < oo. On peut donc appliquer
le théoréme de dérivation sous le signe somme énoncé au Théoréme B.3 pour obtenir

39
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G (1) = 31 Pant™ oy = 37,5 pan puisque EX = 37 ) p,n < oo. En recommen-
gant, on montre de méme que G% (1) = > -y pan(n—1)t"%—y = >, pan(n— 1) sous

1)
Ihypotheése ) o, pan(n — 1) = E[X(X — 1)] < oo. En dérivant & fois, nous obtenons

GPM) =Y pan(n—1)- (n—k+1) =E[X(X — 1)+ (X — [ +1)]

n>k
sous I'hypotheése E[X (X —1)--- (X =1+ 1)] < occ. O
EXEMPLES 5.4.

(a) La loi de Bernoulli B(p) de parameétre 0 < p < 1 est Px = gdp + pd; ou ¢ = 1 — p.
Par conséquent, pour tout 0 < t < 1, Gx(t) = qt° + pt* = ¢ + pt. On a bien sir,
Gx(0)=¢, Gx(1)=q+p=1et EX =G (1) =p.

(b) La loi binomiale B(n,p) de parameétres n > 1et 0 <p < lest >, _, (Z) pEq k6,

de sorte que Gy (t) = Y p_op"q" "tk = S 0_ (pt)*q" ™" = (¢ + pt)" en utilisant la
formule du binéme de Newton. Avec n = 1, on retrouve la formule précédente pour

B(p).

On obtient EX = G'x(1) = np(q + pt)"*,_, = np(¢ + p) = np ainsi que E[X (X —
D] =G%(1) =n(n—1)p*(g+pt)" %,_, = n(n — 1)p*. On en déduit que Var(X) =
E[X(X — )] +EX — (EX)? = n(n — 1)p* + np — (np)* = npq.

(c) La loi de Poisson P()) de paramétre A > 0 est > . e *A"/nlé, de sorte que
Gx(t) = e A3 oA/l = e S (M)"/nl = e M = XD On a EX =
G (1) = e M, = A ainsi que E[X(X — 1)] = G%(1) = A2e*Y,,_; = A2 On
en déduit que Var(X) =E[X(X — 1)]+ EX — (EX)? = 2+ X -\ =\

(d) La loi géométrique G(p) est »_, -, q"1pd,. Par conséquent Gx(t) = D1 g ipth =
Pty s (qt)" ™t = pt Yo so(qt)" = pt/(1 — qt). On obtient donc EX = G (1) =
[p(1 = qt) + pat]/(1 = gt)*—1 = 1/p.

Comme le montre le résultat suivant, la fonction génératrice permet de retrouver la

loi de X.

PROPOSITION 5.5. Soit X une variable aléatoire entiére de fonction génératrice Gx.
Nous avons

Pn = Gg?)(())/n!, n>0
ot Gg?)(O) est la dérivée n-ieme a droite de G'x en 0.

DEMONSTRATION. La preuve est analogue a celle de la Proposition 5.3. En dérivant n
fois terme a terme la série (5.2), on obtient Gg?) () =>p, pek(k—=1) - (k—n+1)tF =
pan! + > pek(k—1) - (k—n+1)tF " etent=0: Gg?)(O) = pyn! + 0. O

De ce fait Gx caractérise la loi de la variable entiére X.

Un développement illimité formel en t = 0 de Gx donne Gx(t) =), -, G()?)(O)/n! "
(un tel développement s’appelle un développement en série entiére). La proposition pré-
cédente exprime que 'on peut identifier terme a terme cette série formelle avec la série

(5.2) 1 Gx(t) = 3,50 Pal™
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5.2. Fonctions caractéristiques

On considére maintenant une variable X générale. On cherche une fonction analogue
a Gx qui permette de calculer aisément a 1’aide de dérivations successives les moments
de X. La généralisation naturelle de la fonction X +— tX lorsque X peut prendre des
valeurs non-entiéres s’obtient en posant t = e® ce qui nous donne X > e**X. De sorte que
la généralisation de Gx(t) = Et* est Lx(s) = Ee*¥X.

DEFINITIONS 5.6.

(1) La transformée de Laplace de la loi de X est définie par
s € R Lx(s) =Ee™* € [0, ]
(2) La transformée de Fourier de la loi de X est définie par

s € R ¢x(s) =Ee*X € C

ol i est le nombre imaginaire tel que 2 = —1. On appelle aussi ¢x la fonction

caractéristique de la loi de X.

REMARQUES 5.7.

sX

(1) Puisque e*X > 0, son espérance Ly(s) = Ee*X est toujours définie dans [0, oo]

(en incluant la valeur +00).

(2) De méme, €% = cos(sX) + isin(sX) est une variable bornée et son espérance
dx(s5) = Ee®*X = E[cos(sX)] + iE[sin(sX)] est un nombre complexe bien défini
puisque ses parties réelle et imaginaire sont intégrables puisque bornées.

(3) En particulier, la fonction caractéristique ¢x(s) est définie pour tout réel s alors
qu’on peut avoir Ly (s) = 400 pour tout s non nul comme par exemple lorsque
X suit une loi de Cauchy, voir (?7?).

(4) Lorsque X est une variable entiére, nous avons Lx(s) = Gx(e*) et ¢x(s) =
Gx(e”), s € R.
THEOREME 5.8.
(1) On suppose qu’il existe s, > 0 tel que Ee*!Xl < oo. Alors, pour tout k > 1,
E|X[* < oo et
E(x*) = LE¥(0).
(2) Sous les mémes hypothéses qu’en (1), nous avons
(InLx)(0)=EX et (InLx)"(0)=VarX.
(3) Si E|X|* < oo alors ¢x est k fois différentiable et
EX* = (=)"0(0)

La premiére assertion du théoréme montre que I’hypothése Ee®l X < oo faite en (1) et
(2) est bien plus restrictive que celle faite en (3). Ceci justifie 'usage de la fonction carac-
téristique plutot que celui de la transformée de Laplace dans certaines situations. Notons
que les calculs sont essentiellement les mémes avec Lx et ¢x du fait que formellement

¢X(8) = Lx(ZS)
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DEMONSTRATION. C’est une application directe du Théoréme B.3 de dérivation sous
le signe somme.

e Preuve de (1). Pour tout k, il existe ¢ > 0 tel que |z|* < ¢ + el Vo € R. Par
conséquent, E| X |¥ < ¢+ Ee*l¥l < oo,

La dérivée k-ieme de s — e*X est X*e*X. Or nous avons | X*esX| = | X |FesX < cte®olX
des que |s| < s avec 0 < 57 < s, pour une certaine constante c. Sous notre hypotheése,
nous avons E|X*esX| < ¢ + Ee*Xl < oo pour tout s tel que |s| < s;, ce qui permet
d’appliquer le Théoréme B.3 de dérivation en s = 0 (avec Y = ¢ + e*I¥l). Ceci nous
donne LY (0) = E(X*e*X) = EX* qui est le résultat annoncé.

e Preuve de (2). Nous avons (InLx)" = Ly /Lx et (InLx)" = L%/Lx — L'3/L%. En
particulier en 0, nous obtenons grace a (1), (In Lx)'(0) = L (0)/Lx(0) = EX puisque
Lx(0)=1et (InLx)"(0) = L%(0)/Lx(0) — L'2(0)/L3%(0) = EX? — (EX)? = VarX.

e Preuve de (3). Elle est analogue a celle de la seconde partie de (1). La dérivée k-iéme

de s — X est i* X*e™X. Or nous avons |i*X*e*X| = | X|* pour tout s et nous faisons
I'hypothése que E|X|* < co. A l'aide du Théoréme B.3 de dérivation en s = 0 nous
obtenons gbg?)(O) = E(i*X*e%Y) = (*EX* qui est le résultat annoncé. O

REMARQUE 5.9. Le développement formel en série entiere de Lx : Lx(s) = D ;5 Lg’;) (0)s*/k!,
peut nous permettre d’identifier rapidement les dérivées Lg];)(()) lorsqu’on en connait 'ex-
pression Lx(s) = >, axs". Nous avons alors Lgl;)(O) = Klag, k > 0.

Un raisonnement analogue fonctionne lorsqu’on ne connait qu'un développement limité

en 0 a lordre K : Lx(s) = Zszo apst® + sFe(s), pour identifier les K premiéres dérivées
en 0 de Ly.

EXEMPLES 5.10.

(a) Loi de Poisson P(A). En reprenant ’Exemple 5.4-(c), avec la Remarque 5.7-(4) nous
obtenons Lx(s) = exp(A(e®—1)) donc In Lx(s) = A(e®*—1) de sorte que (In Lx)'(s) =
(In Lx)"(s) = Ae®. Avec le Théoréme 5.8-(2) on retrouve EX = VarX = .

(b) Loi géométrique G(p). En reprenant ’Exemple 5.4-(d), avec la Remarque 5.7-(4) nous
obtenons Lx(s) = pe®/(1 — ¢qe®) donc In Lx(s) = lnp + s — In(1 — ¢ge®) de sorte que
(InLy)'(s) = 1+ qe*/(1 — qe*) et (InLx)"(s) = U021 Avec le Théoreme
5.8-(2) on retrouve EX = 1/p et on obtient VarX = (¢p + ¢*)/p* = (1 — p)/p*.

(¢) Loi exponentielle £(X). Puisque fx () = 1gz=opAe ™ nous avons Lx(s) = A [ e™e ™ dx =
A fooo e~ A=9)7 dr. Cette intégrale est convergente si et seulement si s < A et dans ce
cas Lx(s) = A\/(A—s). Nous sommes bien dans les conditions d’application du Théo-
réme 5.8-(1). Lorsque |s|/A < 1, nous avons Lx(s) = 1/(1 — s/A) = > ,oo(s/A)F =

k>0 2—’?/’\“—; En tenant compte de la Remarque 5.9, nous obtenons Lg’;)(O) = kl/\F,

donc EX* = k!/\F.

Compte tenu de I'importance des variables aléatoires normales nous isolons le calcul
de leurs transformées de Laplace et fonctions caractéristiques.

PROPOSITION 5.11.

(1) Soit Z une variable aléatoire normale standard : Z ~ N(0,1). Nous avons pour
tout réel s, Ly(s) = e /% et ¢py(s) = e /2.
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(2) Soit X une variable aléatoire normale de loi N'(u1, 0*). Nous avons pour tout réel
s, Lx(s) = e"sto°5°/2 et ¢y (s) = es—7"5/2,

DEMONSTRATION. e Preuve de (1). Nous ne donnons que la preuve concernant Ly
en admettant que le lien formel ¢x(s) = Lx(is) est rigoureux dans ce cas. Cette identité
nécessite la notion de prolongement analytique (prolongement de R a C) qui n’est pas
du niveau de ce cours.

Pour tout réel s,

)
e /Zdz

Lz(S) =

2
5 z/ZdZ

—L2_ 2y (2
(2% —2sz+s )es /2 dz

= 682/2/ L e"2(==9% gy
R

= €

5

ou la derniére égalité provient de fR \/L?re—%(z—sﬁ dz = 1, la condition de normalisation
de la densité N (s, 1), voir (4.16).

En admettant ¢ (s) = Ly (is), on voit que ¢4(s) = e™5/2.

e Preuve de (2). Grace a (4.14) nous avons X = p+0Z de sorte que Lx (s) = Ees#+o%) =
et Ly(0s) et ¢x(s) = Be*to2) = ¢ishg ,(g5). O






CHAPITRE 6

Couples aléatoires

Beaucoup d’énoncés probabilistes intéressants s’expriment & l’aide d’une paire de
variables aléatoires X, Y. Nous allons étudier le probléme de leur variation conjointe sur
le méme domaine €2. Dans tout ce qui va suivre, les variables aléatoires sont définies sur

le méme espace probabilisé (€2, A, P).

6.1. Lois jointe et marginales
La loi du couple (X,Y) est la mesure de probabilité Pxy sur R? qui est spécifiée par
Pxy(AxB)=P(X € AetY € B)
pour tous intervalles A et B. On appelle lois marginales du couple (X,Y") les lois Py et
Py de X et de Y. Nous avons pour tous intervalles A et B,
Px(A) = Pxy(AxR)
Py(B) = Pxy(RxB)
Pour distinguer la loi Px y des lois marginales, on I’appelle parfois la loi jointe de (X,Y).
EXEMPLE 6.1. Soit un couple aléatoire (X,Y") qui prend les valeurs (1,3), (1,4) et
(2,4) avec les probabilités respectives 1/4, 1/8 et 5/8.

Y A
(3/4) 4 Lo n S
(/4 3 L3
(1)

1 2
(3/8) (5/8)
Sa loi est Pxy = }15(173) + é5(174) + 25(2,4). Ses lois marginales sont Py = %51 + %52 et
PY = }1(53 + %(54
6.2. Fonction de répartition

Nous introduisons une notion de fonction de répartition d’un couple de variables

aléatoires analogue a celle des variables réelles.

DEFINITIONS 6.2. Une application (X,Y) : Q — R? est un couple aléatoire si pour
tout z,y € R, 'ensemble {w € Q; X(w) <z et Y(w) <y} appartient a A.
La fonction de répartition jointe de (X,Y) est la fonction Fyy : R* — [0, 1] donnée par

Fxy(z,y) =P(X <z,Y <y).

45
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On montre aisément que pour tous a < b, c < d € R
Pla < X <bec<Y <d)
= FX,y(b, d) — vay((l, d) — F)Qy(b, C) + vay((l, C).
Y

En d’autres termes, nous pouvons évaluer la probabilité que le point aléatoire (X,Y)
"tombe" dans la région rectangulaire |a,b]x]c,d] du plan R?. En travaillant de fagon
analogue a la Proposition 2.9, on récupere les probabilités de tomber dans des régions
rectangulaires quelconques, puis leurs réunions dénombrables, etc... De fil en aiguille,
il est possible de montrer, grace aux propriétés des mesures de probabilité, I'assertion
suivante :

PROPOSITION 6.3. Fxy spécifie de maniére unique P((X,Y) € C) pour toutes les
parties ouvertes C' de R?%. En d’autres termes, Fxy spécifie entierement le loi jointe Px y.

Les fonctions de répartition marginales de X et de Y sont
Fx(z) = P(Xgm):JLIEOP(XSxethn)
= Fxy(z,00):= ylggo Fxy(x,y),
F(y) = PY <y) = TLILI&IP’(X <netY <y)
= Fxy(oo,y) = lim Fxy(z,y),

On constate que, méme sur I’Exemple 6.1 qui est trés simple, la fonction de répartition
Fxy est pénible a expliciter. En effet, elle nécessite de découper le plan en 5 zones
rectangulaires. Nous n’emploierons donc que trés peu souvent les fonctions de répartition
dans les calculs explicites.

6.3. Indépendance

Deux variables aléatoires discrétes X et Y sont dites indépendantes si pour tous
r,y E R, P(X =zetY =y) =P(X = 2)P(Y = y). Nous revisiterons plus en détail
cette notion importante au Chapitre 9.



6.3. INDEPENDANCE 47

Il est clair que cette définition de I'indépendance ne peut pas étre conservée si I'une
au moins des variables (par exemple X) est continue, puisque dans ce cas P(X = z) = 0,
pour tout x € R. Nous adopterons la définition générale suivante.

DEFINITION 6.4. Les variables aléatoires X et Y sont dites indépendantes si
PX<zetY <y)=PX <z)PY <y), Vz,yecR.

On vérifie que pour des variables aléatoires discrétes, cette définition de I'indépen-
dance est équivalente a celle rappelée plus haut.
Une formulation équivalente est : X et Y sont indépendantes si et seulement si

Fny(.I',y) = FX(.T)Fy(y), Vx,y € ]R

PROPOSITION 6.5. Soient X etY deux variables aléatoires indépendantes. Alors pour
toute réunion dénombrable d’intervalles A et B, nous avons

P XeAetY eB)=P(X € AP(Y € B)

et pour toutes fonctions numériques continues par morceaux p et 1, les variables aléa-
toires (X)) et Y(Y') sont indépendantes.

Notons que lorsque X et Y sont des variables discrétes dont toutes les valeurs sont
isolées, toutes les fonctions ¢ et 1) sont continues (en restriction a X (£2) et Y (Q)).

IDEE DE LA PREUVE. Nous n’avons pas les outils suffisants pour donner une preuve
compléte (donc une preuve) de ce résultat. Notons toutefois qu’il est possible de montrer,
de facon similaire a la preuve de la Proposition 6.3, que X et Y sont indépendantes si
et seulement si pour toutes réunions dénombrables de parties ouvertes A et B de R,
P(X €eAetY € B)=P(X € A)P(Y € B).

Maintenant, nous pouvons écrire pour toute paire d’ouverts A, B :

]P’(go(X) e Aecth(Y)e B) - IP(X col(A)etY e ¢—1(3)>

- IP’(X e go’l(A))IP’(Y e w*(B))
= P(p(X) € A)P(Y(Y) € B)

ou l'avant-derniére égalité est une conséquence de I'indépendance de X et Y et du fait que
¢ et 1 sont continues par morceaux, les ensembles o~ !(A) et 1~!(B) sont des réunions
dénombrables d’ouverts. O

Cette notion mathématique de I'indépendance est cohérente avec la notion intuitive
que nous en avons. Pour étayer cette affirmation, donnons-en une illustration simple.

EXEMPLE 6.6. Nous avons deux urnes contenant des boules de couleur numérotées.
— La premiére urne contient 5 boules numérotées : 1,2,3,4 et 5. Les boules 1,2,3 sont
jaunes et les boules 4,5 sont rouges.
— La deuxiéme urne contient 3 boules numérotées : a,b,c. Les boules a,b sont vertes
et la boule ¢ est bleue.
On note X et Y les numéros aléatoires des boules tirées au hasard dans la premiére et
la seconde urne. On suppose que ces tirages sont uniformes sur {1,2,3,4,5} et {a,b, c}.
De méme, on note U et V' les couleurs aléatoires des boules tirées au hasard dans la
premiére et la seconde urne : U = ¢(X) et V = 9(Y) avec ¢(1) = ¢(2) = ¢(3) = jaune,



48 6. COUPLES ALEATOIRES

©(4) = ¢(5) = rouge, ¥ (a) = ¥ (b) = vert et ¥(c) = bleu. On a donc P(X = jaune) = 3/5,
P(X = rouge) = 2/5 ainsi que P(Y = vert) = 2/3, P(Y = bleu) = 1/3.

Si de plus ces tirages sont indépendants (au sens habituel du terme), on n’avantage aucun
couple de boules au détriment d’autres : la loi de (X,Y") est uniforme sur {1,2,3,4,5} x
{a, b, c}. On constate qu’alors X et Y sont des variables aléatoires indépendantes au sens
mathématique. En effet, pour tous A C {1,2,3,4,5} et B C {a,b,c},

#(AxB)
#({1,2,3,4,5} x {a,b,c})

#(A) x #(B)
#({1,2,3,4,5}) x #({a,b,c})
#A) #(B)

5 3
= P(X € AP(Y € B)

En particulier, en prenant A = ¢~ !(jaune) = {1,2,3} et B = ¢~ !(vert) = {a,b} on
obtient

P((X,Y) € AxB) =

P(U = jaune,V =vert) = P((X,Y) € {1,2,3}x{a,b})
= P(X €{1,2,3})P(Y € {qa,b})
= P(U = jaune)P(V = vert)
et de méme pour les autres couleurs. Ce qui prouve I'indépendance mathématique de U

et V. Mais il est clair que si les tirages dans les deux urnes sont indépendants (au sens
habituel) il en est de méme pour les couleurs des boules tirées.

EXERCICE 6.7. Soient X et Y deux variables aléatoires indépendantes de fonctions
de répartition F et Fy. Déterminer les lois de U = max(X,Y) et V = min(X,Y).

SOLUTION. Du fait que pour tout ¢t € R, max(z,y) <t <= (x <tety <t),
Fy(t) = Pmax(X,Y) <t)
= PUX <t}n{Y <t})
= P(X <t)P(Y <)
= Fx(t)Fy(t)
ou 'on a fait usage de 'indépendance dans ’avant-derniére égalité.
De méme, pour tout ¢ € R, min(z,y) >t <= (x > t) et (y > t), donc
1—Fy(t) = Pmin(X,Y) > 1)
= PH{X >t} n{Y >t})
= P(X > t)P(Y > ¢)
[1 = Fx(®)][1 = Fy(t)]
d’ou
Fy(t)=1—[1—-Fx(@)][1 - Fy(t)], t e R.

ce qui détermine la loi de V. O
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EXEMPLE 6.8. On se donne deux variables aléatoires X et Y indépendantes de lois
exponentielles £(A\) et £(u). Calculons a 'aide de I'exercice précédent les lois de U =
max(X,Y) et V=min(X,Y).

Nous avons pour tout ¢ < 0, Fx(t) = Fy(t) = 0 et pour tout ¢t > 0, Fx(t) =1 — e,
Fy(t) =1 — e #. Par conséquent pour tout ¢ > 0,

fut) = Fi(t) = fx(O)Fy(t) + Fx () fr(t)
= e M1 —e™) + pe (1 —eM)

et

1-Fy(t) = [1=Fx@Il - Fr)]

e—Ate—mﬁ _ e—(M—u)t

Pour tout t < 0, Fy(t) = Fy(t) = 0.
On constate que V = min(X,Y’) admet la loi exponentielle £(\ + p).

6.4. Couples discrets

Soit un couple de variables aléatoires (X,Y’) prenant ses valeurs dans I'ensemble
produit X x Y avec X = {xy,...,x1} et Y = {y1,...,yx}. Pour tout indice n = (I, k) €
N:={1,...,L} x{1,..., K}, on note 2z, = (z;,yx). Cet ensemble étant fini, le couple
Z = (X,Y) est une variable aléatoire discréte a valeurs dans X x ). Elle est donc de
la forme Pxy = Pz = ) cnPnbz = D 1cicpicher PLkO(zy,) avee prp = P((X,Y) =
(z1,y%)) = P(X = 27 et Y = y;,). Pour plus de clarté, on note Pk = pxy (2, yx) et on
peut regrouper I’ensemble de ces probabilités élémentaires en un tableau matriciel :

Y1 Y2 e YK —Y
T pX,Y(«Tla yl) pX,Y(fL’I; y2) T px,y(xh ?JK) PX($1)
T2 PX,Y($2, yl) pX,Y(HTQ, 3/2) T pX,Y(3727 Z/K) px(ﬂfz)
X pX,Y(~TLa yl) pX,Y(SCL, 3/2) T px,Y(l’L, yK) PX(SCL)
X1 py (1) Py (y2) e Dy (Yk) 1

dont 'intérieur décrit la loi jointe de (X,Y"). Les lois marginales sont données par Px =
Zlgsz px(71)6s, et Py = Z1§k§K py (yr)dy, avec

px(z) = Z pxy (T ye), 1<I<L
1<h<K

py(ye) = Z pxy(@nye), 1<k<K
1<I<L

puisque px(z;)) = P(X =) = P(X =xet Y € Y) = P(X,Y) € {z} x)) =
Y i<k P(X =21 et Y = y;) et de méme pour py (y).
Par conséquent la derniére ligne du tableau est constituée des sommes par colonnes et
la derniére colonne des sommes par lignes : les marges du tableau spécifient les lois
marginales Px et Py.

De fagon plus générale, soient X et Y deux variables aléatoires a valeurs dans des
ensembles dénombrables X' et ). Alors le couple (X,Y) est a valeurs dans I’ensemble
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dénombrable X x ) (voir la Proposition A.4) et sa loi jointe est de la forme
PX,Y = Z pX,Y<5'77 y)é(m,y)
zeX yey

et on montre comme précédemment la

PROPOSITION 6.9. Les lois marginales sont Px = 3, px ()0, et Py = >, .y, py (y)dy
avec

px(z) = ZPX,Y(x,y), reX

yey

py(y) = ZPX,Y(%?J% yey.

reX

EXEMPLE 6.10. Considérons les deux lois jointes spécifiées par les tableaux suivants :

1 3 | «Y 1 3 | <Y

-1 1011021 0,3 -1 1021011 0,3
2 10,4510.25| 0,7 2 10,3510,35| 0,7
X 110,5510,45 1 X 110,55(0,45 1

On constate que ces deux lois jointes sont distinctes bien qu’elles possédent les mémes
lois marginales. Par conséquent la loi jointe Pxy n’est pas spécifiée par la donnée des
deux lois marginales Px et Py. Il y a plus d’information dans l'intérieur du tableau que
sur les marges.

PROPOSITION 6.11. Soit (X,Y) de loi Pxy = erx,yey Px,y (2,Y)0(zy). Les variables
X etY sont indépendantes si et seulement s’il existe deux fonctions q : X — [0,1] et
r:Y — [0,1] telles que pour tous x € X ety € Y nous avons pxy(z,y) = q(x)r(y).
Dans ce cas, nous avons aussi

pxy (T, y) =px(@)py(y), r€X,ye).

DEMONSTRATION. C’est une conséquence directe de la Proposition 6.5 en prenant
A={z} et B={y}avecx € X et y € ).
Notons aussi que lorsque pxy(z,y) = q(z)r(y), px(z) = ag(x) pour tout x avec a =
> yey T(y). De méme pour tout y, py(y) = br(y) avec 1 =3 y,py(y) =03 yr(y) =
ab. Finalement, r(x)q(y) = px (x)py (y)/(ab) = px (x)py (y). 0

EXEMPLE 6.12. Considérons la loi jointe spécifiée par le tableau

1 3 —Y
-1 10,165 0,135 | 0,3
2 10,385(0,315| 0,7

X T10,55 | 045 1

On constate qu'il posséde la structure produit pxy(x,y) = px(x)py(y), Vo, y. Les va-
riables X et Y sont donc indépendantes. On note que les lois marginales Px et Py sont
les mémes que celles de 'Exemple 6.10.
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Puisque le couple discret (X,Y) est une variable discréte a valeurs dans 1’ensemble
dénombrable X x ) (voir la Proposition A.4) l'espérance de ¢(X,Y") est donnée par le
Théoréme 3.10 qui dans ce cas précis s’écrit

(6.13) Eo(X,Y)= Y ol,y)pxy(r,y)
zeX,yey

et qui est correctement définie dés lors que

E|Q0(X7 Y)| = er){,ye)} |(,0(l‘, y)|pX,Y<x7y) < 0.
On obtient immédiatement la

PROPOSITION 6.14 (Linéarité et croissance).
(1) En particulier, avec p(z,y) = ax + by, nous obtenons la linéarité de [’espérance
E(aX +bY) =aEX 4+ DEY, a,b € R
pour toute variables aléatoires X et'Y telles que E|X| < oo et E|Y| < o0.

Plus généralement pour toutes fonctions ¢ et 1 telles que E|o(X,Y)] < oo et
E|¢(X,Y)| < oo et tous réels a,b, nous avons

Elap(X,Y) + b)(X,Y)] = aEp(X,Y) + bEY(X,Y).
(2) Si les fonctions p,1) : X x Y — R sont telles que ¢ < 1, alors Ep(X,Y) <
Ey(X,Y).
DEFINITION 6.15. Nous définissons la covariance de (X,Y’) par
Cov(X,Y) := E[(X — EX)(Y — EY)]
c’est-a-~dire
Cov(X,Y)= >  (r—EX)(y—EY)pxy(z,y).
zeX yey

On dit que X et Y sont décorellées si Cov(X,Y) = 0.

Noter que, tout comme 'espérance, la covariance n’est pas toujours définie. Il faut
pour cela que >,y oy [( — EX)(y — EY)|pxy(z,y) < 0o. On montrera au Corollaire

6.37 qu'une condition suffisante est que E(X?) < oo et E(Y?) < oo.
Un simple calcul nous mene a

Cov(X,Y)=E(XY) - EX)E(Y).
PROPOSITION 6.16. Soient X etY deux variables aléatoires discretes indépendantes.

(1) Pour toutes fonctions ¢ sur X et sur) telles que E|lp(X)| < oo et E[p(Y)] <
00, NOUS AVONS

E[p(X)9(Y)] = E[p(X)JE[H(Y)].
(2) Si E|X| < oo et E|Y| < oo alors Cov(X,Y) = 0.
DEMONSTRATION. e Preuve de (1). Avec la Proposition 6.11 nous avons

Elp(X)p(Y)] = > e@)ey)px(@)py(y)

reX yey

= > p(@)px (@)Y y)py(v)

reX yey

= Elp(X)E[H(Y)]
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qui est le résultat annoncé.
e Preuve de (2). Grace a (1), nous avons E(XY) = E(X)E(Y) c¢’est-a-dire Cov(X,Y) =
0. O
L’exercice suivant montre que la réciproque de I'assertion (2) de cette proposition est
fausse.
EXERCICE 6.17.

(a) On considére le couple aléatoire (X, Y’) dont la loi est uniforme sur les quatre points
du plan (1,0),(0,1),(—1,0) et (0,—1). Montrer que Cov(X,Y) = 0 mais que X et
Y ne sont pas indépendantes.

(b) On considére le couple aléatoire (X,Y’) dont la loi est uniforme sur les huits points
du plan d’affixes e’*™/% 0 < k < 7.
)

/ N
—1{] 0 /1

-1

Montrer que Cov(X,Y) = 0 mais que X et Y ne sont pas indépendantes.

SOLUTION. Nous ne donnons que la solution de (a). Nous avons Px = Py = }15_1 +
100+101 de sorte que EX = EY = 0. De plus XY = 0, donc EXY = 0 et Cov(X,Y) = 0.
D’autre part X et Y ne sont pas des variables indépendantes puisque P(X = 1)P(Y =
0)=1ix1=1/8#1/4=P((X,Y)=(1,0)). O

6.5. Couples continus

Par analogie avec les variables aléatoires continues, nous introduisons la notion sui-
vante.

DEFINITION 6.18. Un couple aléatoire (X,Y’) de fonction de répartition jointe Fx y
est dit continu, s’il existe une fonction intégrable fxy : R* — [0, oo telle que

x Y
FX,Y(x7y) = / / fX,Y(Svt) deta vxay €R.

Dans ce cas, la fonction fxy est appelée fonction de densité jointe du couple aléatoire
(X,Y).

On déduit de cette définition que si Fyy est continiment dérivable alors

2
(6.19) fxy(z,y) = Dby

PROPOSITION 6.20. Les lois marginales Px et Py admettent les densités

fx(x) = /RfX,Y(DU,y)dy, reR

FX,Y(:B7 y)

Irly) = /RfX,Y(fB,y)dl“; yeR
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DEMONSTRATION. Nous avons vu que les fonctions de répartition marginales de X
et de Y sont Fx(z) = Fxy(z,00) et Fy(y) = Fxy(00,y). En d’autres termes, Fx(z) =
ffoo (fR fxy(s,y) dy) ds d’ou il vient que fx(z) = [; fx,v(,y) dy. De la méme maniére,
nous obtenons que la fonction de densité marginale de Y est fy (y) = fR fxy(z,y)de. O

DEFINITION 6.21. Par analogie avec (6.13) et la définition (3.18) qui est justifiée par
le Théoréeme C.10, nous définissons (sans plus de justification cette fois-ci) l'espérance
de la variable aléatoire p(X,Y") par

Ep(X,Y) i / /R ol ) (2. y) dady

pour toute fonction ¢ : R* — R telle que || fx,y soit intégrable et [[o, [o(x, y)|fx,y (x,y) dedy <
0.

On déduit immédiatement de cette définition la
PROPOSITION 6.22 (Linéarité et croissance).
(1) En particulier, avec p(z,y) = ax + by, nous obtenons la linéarité de l’espérance
E(aX +bY) = aEX + bEY, a,b € R

pour toute variables aléatoires X et'Y telles que E|X| < oo et E|Y| < o0.
Plus généralement pour toutes fonctions ¢ et 1 telles que E|o(X,Y)] < oo et
E|¢(X,Y)| < 0o, nous avons

Elp(X,Y) +¢(X,Y)] =Ep(X,Y) + E¢(X,Y).
(2) Si les fonctions p, : R? — R sont telles que o < 1, alors Ep(X,Y) <
Ey(X,Y).
Comme pour les couples discrets nous définissons la covariance de (X,Y') par
Cov(X,Y) = E[(X —EX)(Y —EY)]

B / /RQ@ —EX)(y — EY) fxy(x,y) dvdy.

Noter que, tout comme ’espérance, la covariance n’est pas toujours définie. Nous verrons
au Corollaire 6.37 qu'il suffit pour cela E(X?), E(Y?) < co.
Comme le montre la proposition suivante, la fonction de densité jointe d'un couple
aléatoire continu de variables indépendantes a une forme produit.
PROPOSITION 6.23.
(1) Soit (X,Y') un couple aléatoire continu de fonction de densité jointe fxy. S’il
existe des fonctions g et h telles que
fX,Y(xvy> = g([L‘)h(y), €,y € R)
alors X et'Y sont des variables aléatoires indépendantes. De plus, la fonction
de densité jointe s’écrit alors : fxy(z,y) = fx(x)fy(y).

(2) Soient X etY des variables aléatoires indépendantes qui admettent des fonctions
de densité fx et fy continues par morceaux. Alors la fonction de densité jointe

de (X,Y) est
Ixy(@,y) = fx(@)fy(y), =zyekR
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DEMONSTRATION. e Preuve de (1). La premiére partie de la proposition est presque
immeédiate. La forme fxy(z,y) = fx(x)fy(y) s’obtient par un raisonnement analogue &
celui de la preuve de la Proposition 6.11.

e Preuve de (2). Du fait des hypothéses, Fx et Fy sont des fonctions dérivables partout
sauf en un nombre fini de points. De ce fait, la fonction de répartition jointe Fix y(x,y) =
Fx(z)Fy(y) est partout dérivable, sauf sur la réunion d’un nombre fini de droites (dont
laire est nulle et que 1'on peut exclure des intégrales doubles). En dehors de cet ensemble,

on peut appliquer (6.19) qui nous donne fxy(x,y) = Fi(2)F}(y) = fx(z)fy(y). Ce qui
achéve la preuve. 0

Le résultat suivant est une conséquence immédiate de la proposition précédente.

COROLLAIRE 6.24. Soit (X,Y) un couple aléatoire continu de variables indépen-
dantes.

(1) Si E|X|,E|Y| < oo, alors Cov(X,Y) = 0.
(2) Si Elp(X)|,E[(Y)] < oo, alors E[p(X)(Y)] = Ep(X)E(Y).
DEMONSTRATION. Immédiate. OJ

Attention : 1l existe des couples aléatoires continus (X,Y’) de covariance nulle dont les
composantes X et Y ne sont pas indépendantes.

EXERCICE 6.25. Montrer, sans calculs explicites, que c’est le cas pour le tirage aléa-
toire uniforme d’un point (X,Y") du disque unité.
Au fait, quelle peut bien étre la fonction de densité jointe de ce couple aléatoire ?

EXEMPLE 6.26 (L’aiguille de Buffon). Les lignes d’équations y = n (n € Z), sont
tracées sur un plan et une aiguille de longueur unité est jetée sur ce plan. Quelle est
la probabilité qu’elle intersecte 'une des lignes? On suppose que l'aiguille n’a pas de
préférence de position ni de direction.

Cherchons la solution de ce probléme. Soient (X,Y’) les coordonnées du centre de
l'aiguille et © I'angle, modulo 7, de 'aiguille avec I'axe des x. On note Z =Y — |Y]
(Y] est la partie entiére de V') la distance du centre de Iaiguille a la ligne immédiatement
en-dessous de lui. Nos hypothéses se traduisent par

(a) Z est distribué uniformément sur [0,1] : fz = L.
(b) © est distribué¢ uniformément sur [0, 7] : fo = L1194
(c) Z et © sont indépendantes : fzo(z,0) = fz(2)fo(8).

Par conséquent, (Z,©) a pour fonction de densité jointe

f(z,0) = —Lio<z<1,0205m).

A Taide d’un dessin, on constate qu’il y a intersection si et seulement si Z € I avec

1 1
I= {(z,@) €[0,1] x [0,7]; z < §sin9 oul—=z< §sin9}.
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W\

1

\ / 1-— (sin@{%
<1 /2 / (sinf)/ 2\

0

Le lieu des centres possibles de 'aiguille impliquant une intersection est en rouge.
Par conséquent,

P(intersection) = //f(z,é’) dzdf
I
1 [

5 sin@ 1
— _/ / dz—i—/ dz | do
T Jo 0 1-1sing

= 2/7.

Buffon a effectivement mis en place cette expérience pour obtenir une valeur approchée
de 7.

EXEMPLE 6.27 (Loi normale bivari¢e). Soit f : R? — R la fonction définie par
1 1 9 9 )
x,Yy) = ——F——=exp | ————— (2" — 2pxy +
fla,y) S < A\ 2y
ol —1 < p < 1. On vérifie que f est bien une fonction de densité jointe, c’est-a-dire :

flz,y) >0 et ffRQ f(z,y) dedy = 1.
EXERCICE 6.28.
(a) Vérifier que [ [, f(2,y)dedy = 1.
(b) Montrer que les lois marginales de X et de Y sont des lois normales centrées réduites.
(¢) Montrer que Cov(X,Y) = [[o, zyf(x,y) dxdy = p.

La fonction de densité jointe d’une loi normale bivariée générale est plus compliquée.
On dit que (X,Y) suit une loi normale bivariée de moyennes 1 et po, de variances o?
et o3 et de corrélation p avec —1 < p < 1, si sa fonction de densité jointe est donnée par

(6.29) f(zy) = ! !

271'0'10'2\/1—7p2 P |:__Q(x’ y):|

2
ol 01,09 > 0 et () est la forme quadratique :

o=t (5 - (552) (552) - (52 ]

EXERCICE 6.30. Montrer que
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(a) X ~N(u1,07) et Y ~ N (pg,03),
(b) Cov(X,Y) = poy0s.

A Taide de la Définition 6.36 plus bas du coeflicient de corrélation Cor(X,Y'), I'énoncé
de (b) est Cor(X,Y) = p.

PROPOSITION 6.31. Soit (X,Y) un couple aléatoire normal. Si Cov(X,Y) =0 alors
X etY sont des variables aléatoires indépendantes.

Ce résultat est remarquable car en général la décorrélation (covariance nulle) n’im-
plique pas I'indépendance, voir ’Exercice 6.17. C’est une propriété spécifique des couples
aléatoires normaux.

DEMONSTRATION. Compte tenu de 'exercice précédent, nous avons p = 0. En injec-
tant p = 0 dans la formule (6.29), on obtient f(z,y) = fx(x)fy(y) (avec X ~ N (uy1,0?)
et Y ~ N(uz,03)) et on conclut avec la Proposition 6.23. O

EXERCICE 6.32. Soit (X,Y’) un couple aléatoire de fonction de densité jointe

1 T
f('ra y) = 1{$,y>0}§ €xp (_y - §> AN R.
Trouver la loi marginale de Y.

SOLUTION. Pour tout y <0, fy(y) = [; f(x,y)dx = 0 et pour tout y > 0,

fY(y):/Rf(x,y)dl‘:/o éeXp (—y—%) dr =eY

puisque l'on reconnait que x +— 1{’3>0}zl; exp <—§> est la fonction de densité d’une loi

(exponentielle). Par conséquent Y ~ &(1). O

6.6. Fonctions caractéristiques

On les définit de fagon analogue aux transformées de Laplace et de Fourier des va-
riables réelles, voir la Définition 5.6.

DEFINITIONS 6.33.
(1) La transformée de Laplace de la loi de (X,Y) est définie par
(s,t) € R? = Ly y(s,t) = Ee** ™ € [0, oc]
(2) La fonction caractéristique de la loi de (X,Y") est définie par
(5,1) € R? = pxy(s,t) = EeXTY) € C
oll i est le nombre imaginaire tel que i = —1.

On peut montrer, mais cette preuve est au dela du niveau de ce cours, que la fonction
caractéristique caractérise la loi Pyy. C’est-a-dire que si nous connaissons ¢xy, on
peut calculer Pxy et qu’il n'y a qu'une seule loi Pxy qui admet ¢xy comme fonction
caractéristique. Un résultat analogue est valide pour la transformée de Laplace sous
I'hypothése que Ly y est finie sur un voisinage ouvert de (0, 0).

PROPOSITION 6.34. Soient (X,Y) un couple discret ou continu.
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(1) Les variables X et'Y sont indépendantes si et seulement si la fonction caracté-
ristique de (X,Y") satisfait

¢xy(s,t) = ox(s)oy(t), s,teR.

(2) Si les transformées de Laplace Lx et Ly sont finies au voisinage de zéro, alors
X etY sont indépendantes si et seulement si

ny(s,t) = Lx(S)Ly(t), s,t € R.

DEMONSTRATION. e Preuve de (1). Soient X et Y indépendantes. A I'aide de la
Proposition 6.16 et du Corollaire 6.24, on obtient ¢xy (s,t) = Ee'X 1Y) = E[e?X Y] =
EesXEe™Y = ¢y (s)dy ().

Montrons la réciproque. On se donne (X,Y) tel que ¢xy(s,t) = ¢x(s)py(t) pour tous

s,t. Soit (U, V) un couple de variables indépendantes telles que U £ XxetV EY
Ceci implique bien sir que ¢y = ¢x et ¢y = ¢y. D’aprés ce que nous venons de

montrer, nous avons ¢py(s,t) = ¢y (s)py(t) = éx(s)oy(t). Done, ¢yy = ¢xy. Mais
puisque les fonctions caractéristiques caractérisent les lois (résultat admis), ceci implique

(X,Y) £ (U, V). D’ou le résultat annoncé.
e Preuve de (2). Analogue a celle de (1). O

6.7. Inégalité de Cauchy-Schwarz

Cette inégalité permet de controler en espérance les fluctuations jointes de (X,Y) a
I’aide des variances individuelles de X et Y, voir le Corollaire 6.37 plus bas.

THEOREME 6.35 (Inégalité de Cauchy-Schwarz). Pour tout couple aléatoire discret
ou continu (X,Y') nous avons

[E(XY)]” <E(X*)E(Y?)

avec égalité si et seulement sl existe a,b € R dont ['un au moins est non nul tels que

P(aX =bY) = 1.

Il est entendu que dans I’énoncé de ce théoréme que E|XY| < oo de sorte que les
intégrales qui interviennent sont bien définies, éventuellement & valeurs infinie.

DEMONSTRATION. On peut supposer sans perte de généralité que E(X?),E(Y?) <
0.
Pour tous a,b € R, I'espérance de la variable positive (aX — BY')? est positive. Donc

E((ax - bY)2> = ?E(X?) — 2abE(XY) + B*E(Y?) > 0

Si P(X =0) = 1, 'assertion est évidente.
Si P(X = 0) < 1, alors E(X?) > 0 et I'inégalité ci-dessus peut étre vue comme
une inéquation du second degré en a, a b fixé. Ceci implique que le discriminant réduit :

B ([E(XY)]?—E(X2)E(Y2)) est strictement négatif (si a?E(X2)—2abE(XY)+B2E(Y?) >
0 pour tout a) ou nul (s'il existe un a tel que a’E(X?)—2abE(XY)+0’E(Y?) = E((aX -
bY)2> —0).
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En choisissant b # 0, on obtient [E(XY)]? < E(X?)E(Y?) dans le premier cas et
[E(XY)]? = E(X?)E(Y?) lorsque ]E((aX — bY)2> = 0, c’est-a~dire lorsque P(aX —bY =

0) = 1. O
DEFINITION 6.36. Le coefficient de corrélation de (X,Y") est défini par
XY
Cor(X,Y) = Cov(X, V) :
v/ Var(X)Var(Y)

Pour que cette définition soit valide, il est nécessaire que E(X?) < oo et E(Y?) < oo et
que VarX, VarY > 0.

Une conséquence simple de l'inégalité de Cauchy-Schwarz est le
COROLLAIRE 6.37.
(1) Pour que Cov(X,Y) soit défini, il suffit que E(X?),E(Y?) < co.
(2) Soit (X,Y) tel que 0 < Var(X), Var(Y) < co. Alors
—1 < Cor(X,Y) <1.
DEMONSTRATION. e Preuve de (1). C’est une conséquence immédiate du Théoréme
6.35 et du Corollaire 3.35.

e Preuve de (2). On applique le Théoréme 6.35 avec X —EX et Y —EY a la place de X
et Y. U



CHAPITRE 7

Fonctions d’un couple aléatoire

7.1. Quelques exercices corrigés

EXERCICE 7.1. Soient X et Y deux variables aléatoires indépendantes de lois nor-
males N(0,1). Calculer la fonction de densité de W = X? + V2.

SOLUTION. Pour tout w > 0,

1 1
P(W <w) = // — exp (——(x2 + y2)> dxdy
{24y2<w} 27 2
Vw 2 1
/ / — exp(—r?/2)r drdf
o Jo

—
S]
=

2T

w/2
= / e “du
0

avec le changement de variable en coordonnées polaires en (a) et en posant u = r?/2 en
e—u/2

(b). On constate que W admet la fonction de densité f(u) = 10 S5—. Clest-a-dire
que W suit une loi exponentielle de paramétre 1/2. O

—
=

Attention. Ce n’est pas parce que X est une variable aléatoire continue qu’il en est
de méme pour Y = ¢(X). Par exemple, considérer p(z) =3, Vz € R.

EXERCICE 7.2. On se donne un couple aléatoire (X7, X3) de fonction de densité jointe
fx,.x, et on considére le couple aléatoire (Y7, Y2) tel que

X1 = a7 + Y,
XQZCYi+d}/2

avec ad — bc # 0. Cherchons la loi de (Y7, Y3).

SOLUTION. Pour cela, évaluons pour tout ensemble B C R? (suffisamment régulier)
la probabilité P((Y3,Ys) € B). Soit A I'image de B par T'(y1,y2) = (ay; + bya, cyr + dys)
qui est une bijection du fait de I’hypothése ad — bc # 0.

P((Y1,Y2) € B) = P((X1,X3) € A)

= // fxi,x2 (w1, 02) dydws
A

= // Ix1.x,(ayr + bys, cyr + dys)|ad — be| dy,dy;
B

ou |ad — be| est la valeur absolue du jacobien de la transformation 7. On en déduit que
(Y1,Y5) est un couple aléatoire continu de fonction de densité jointe :

le,Y2 (y1, y2> - |ad - bc|fX1,X2 (ayl + by27 cy1 + dy?)
ce qui acheéve 1'exercice. O
59
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En fait, le procédé est général pour toute transformation bijective T.

EXERCICE 7.3. Soient (X,Y') deux variables aléatoires indépendantes exponentielles
de parameétre A. Trouver la fonction de densité jointe de

U=X+Y, V=X/Y
et montrer que ce sont des variables aléatoires indépendantes.
SOLUTION. On considére la transformation S donnée par
S(x,y) = (x +y,x/y), v,y > 0.

Elle est bijective et son inverse S™! donnée par

= 5l uyp) = (2 M )
(w0) =570 = (T iy ) e

a pour jacobien

Oz Oy
ou Ou U

J(u,v) = S
v v

Par conséquent, avec la formule de changement de variables
dxdy = |J(u,v)|dudv,
nous obtenons pour tout B C R? (suffisamment régulier),

P((U,V)e B) = PSS U, V) e S HB))
P((X,Y) € S7'(B))

- // 1(x>07y>0))\2 exp(—\(z + y)) dzdy
S-1(B)

- 10050y A2 eXp(—Att) ——— dud
//B (u>0,050) A" €xp( u)(1+v)2 udv

Par conséquent, (U, V') admet la densité

U
fov(u,v) = 1(u>o,v>0)>\2€Xp(—)\“)<1+U>2

1
= [N1usouexp(—Au)] [Mwmm]

ol la forme produit de la densité nous indique 'indépendance de U et V. U

7.2. Somme de deux variables aléatoires indépendantes

Soient X et Y deux variables aléatoires continues indépendantes de fonctions de den-
sité fx et fy. Déterminons la loi de S = X 4 Y. Pour cela nous effectuons le changement
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t = x y =
Fs(u) = P(X+Y <u)

= [ e @)ty dady

_ //R Liscufx (O fy (5 — 1)
_ /_oo [/fo(t)fy(s—t)dt ds

cette derniere égalité est diie au théoréme de Fubini. Par conséquent, S est une variable
aléatoire continue de fonction de densité

frar(s) = [ Fx(@)fr(s - a)do
R
DEFINITION 7.4. Soient f et g deux fonctions numériques,

/f g(s—x)dx, seR

est la convoluée de f et g (si cette intégrale est bien définie). L’opération * est le produit
de convolution.

de variables { § = Ty — { T i—t qui nous donne dsdt = dxdy et

On constate facilement que f * g = ¢g * f. On vient de montrer le résultat suivant.

PROPOSITION 7.5. Soient X et Y deux variables aléatoires continues indépendantes
de fonctions de densité fx et fy. Alors la somme X +Y est une variable aléatoire
continue de fonction de densité

Ixvy =[x * fy

EXERCICE 7.6. Soient X et Y deux variables aléatoires indépendantes de lois respec-
tives A (0, 0?) et N(0,7%). Montrer que X + Y suit une loi A(0,0? + 72).

SOLUTION. Pour tout s € R,
fxav(s) = [fx*fr(s)

_ U ooy 1 o) gy
R V2702 V27?2

_ /R %107 exp (—%[w2/02+(8—x)2/72]) da

Or, 2%/0% + (s — )% /7% = Z5 T (w — Uz‘iz s)% + a2—+r2 Par conséquent,

1 1 s 1[o?+ 72 o? 9
Fxav(s) = 2noT exp (_502+72) /Rexp (_5 [ o272 (- U2+7'28) dr

1 ( 52 )
2n(0? + 712) 2(0% +72)

2 | 2 2
U+T(ac— ? 5)2}) dr =1

1 1
T
0272

puisque




62 7. FONCTIONS D’UN COUPLE ALEATOIRE

2

en tant que fonction de densité de la loi N ( 2. O

_o?
0—2_;’_7-2 87 0—2_;’_7-2
On en déduit le résultat suivant.

PROPOSITION 7.7. Soient X; et Xy des variables aléatoires indépendantes de lois
respectives N (pu1,03) et N(p2,03), alors X1 + Xo suit une loi N'(py + pa, 0% + 03).

DEMONSTRATION. La loi de (X7, X3) est égale a celle de (uy 4+ 0171, o + 02Z5) ou
(Z1, Z3) est un couple aléatoire normal standard. Ce que nous écrivons rapidement

c
(X1, X3) = (1 + 0124, pig + 0225).
Par conséquent, X; + X, £ (p1 + p2) + 0121 + 09Z5. Mais, nous venons de montrer que
0121 + 097, £ Voi+ o037 avec Z ~ N(0,1). Ce qui achéve la preuve. O

THEOREME 7.8. Soient X et Y deux variables aléatoires (discrétes ou continues)

indépendantes de fonctions caractéristiques ¢x, ¢y et de transformées de Laplace Lx et
Ly.

(1) La fonction caractéristique de X +Y est
x4y (t) = ox(D)ov(t), teR.

(2) Si Lx et Ly sont finies au voisinage de zéro, la transformée de Laplace de X +Y
est

Lxiy(t) = Lx(t)Ly(t), teR.
DEMONSTRATION. D’aprés la Proposition 6.34, ¢oxiyv(t) = éxy(t,t) = ox(t)oy (1)
et Lx+y(t) = LX7y(t,t) = Lx(t)Ly(t) O
EXERCICE 7.9 (Suite de 'Exercice 7.6). On reprend I’Exercice 7.6 a 1’aide du Théo-
réme 7.8.
SOLUTION. Grace & la Proposition 5.11, ¢x(t) = e 7 /2 et ¢y(t) = e 7 /2 Le

Théoréme 7.8 nous donne ¢x.y(t) = e 7 1/2e7 /2 = =(@+7)/2 quj est la fonction
caractéristique de N'(0, 02 + 72). O
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Conditionnement

8.1. Probabilité conditionnelle

Soit V' € A tel que P(V') > 0. La probabilité de U conditionnelle & V' est définie par
la formule de Bayes

PUNV)
PWU|\V) = ——F——F—, U .
wiv) = "G Uea
Puisque P(V|V)) = 1, I'univers de P(:|V) est restreint a V' C Q.
Q
Tttt I
| 1
o
Ui . V.

PROPOSITION 8.1. La fonction d’ensemble U — P(U|V') est une mesure de probabilité
sur la tribu A ainsi que sur la tribu Ay == {UNV;U € A}, trace de A sur V. De plus,
.AV C A.

DEMONSTRATION. En effet, P(Q|V) = P(V|V) = 1 et si (Uy,)n>1 est une suite de
U telle que | ,5, U, = Q, nous avons [ |, (U, NV) =V et d’apres la Définition 1.9

d’une mesure de probabilité, P(| |-, Un|V) = P(|,>, (U, N V))/P(V) = > o P(U, N
V)/P(V) =3, P(Un|V); ce qui prouve que P(-|V) est une mesure de probabilité. [

Puisque P(:|V') est une mesure de probabilité, on peut définir la loi de (X,Y") sous
P(-|V) par
Pxyw(C) =P(X,Y) € C|V)
pour C' dans la tribu de Borel de R?, ainsi qu’'une espérance par rapport a P(-|V)

MMXYWT—AMLQHMNM@)

On voit aisément que
(a) lorsque (X,Y') est un couple aléatoire discret de loi

PX,Y = Z PxXy (.T, y>5($:y)

zeX yey
on a
L pexvxy (v
Peyw = Y y)}’((V;X ey (@,y) )
reX yey
pX,Y($7y)
E(p(X,Y)|V) = > <P($7?J)W¥

2eX(V)yeY (V)
63
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(b) lorsque (X,Y) est un couple aléatoire continu de loi

Pxy(dzdy) = fxy(z,y)dzdy

on a
1,
Pxyv(dvdy) = d GXISG’/Z”)EY(V)} fxy(z,y)dedy
x?
E(p(X,Y)|V) = // w(m,y)mdxdy.
X(V)xY(V) P(V)

On note Py (dx) et Py (dy) les lois marginales de Py y|y (dzdy).

8.2. Conditionnement dans le cas discret

Soit (X,Y) un couple aléatoire discret de loi Pxy = >y ,cyPxy (2, Y)d(y) En
prenant V = {Y = y} avec y € Y tel que py(y) > 0, on obtient X (V) xY(V) = X x {y}

et
pXY(x7y>
Pxyy= ZE ——— 0(a,
Y=y < py(y) (x,y)

de sorte que

Pxjy—y = prwzy(x)tsx avec

(52) prvala) = PEEI _B(X —aly =) e
(8.3) E(p(X)Y =y) = P(2)px|y =y ().

De fagon analogue, on montre que pour tout z € X tel que px(z) > 0,

Pyix—s = Zpy\xzx(y)éy avec

yey
_ pxy(@y) _ e
(8.4) Pyix=2(y) = @) P(Y =y|X =z) et
(8.5) E@(Y)X =2) = V(Y)pyix=2(Y)-
yey

On remarque qu’il suffit que E|p(X)| < oo et E|Y(Y)| < 0o pour que ces sommes soient
absolument convergentes.

EXEMPLE 8.6. On reprend la loi jointe de I’Exemple 6.10 :

1 3 |«Y
-1 1011021 03
2 10,451025| 0,7

XT11055/045| 1

On voit que Pxjy—; = % 51 _{_% 0y = 0,1818_1 40,8182 et que Py|x—o = % 01+

92 55 = 0,64296; +0,3571 6.
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On a aussi E(X2]Y = 1) = 0,1818-(—1)2 + 0,8182-2 = 3,4546 et E(Y|X = 2) =
0,6429-1 4 0,3571-3 = 1, 7142.

DEFINITION 8.7. Pour toutes fonctions ¢ et 9 telles que E|p(X)| < 0o et El(Y)] <
0o, on définit les variables aléatoires

E(p(X)Y) = > 1py—pE@X)Y =y)

yey
E@(Y)X) = ) lx-aE@Y)X =2)
reX
et on les appelle espérance de ¢(X) sachant Y et espérance de ¥(Y") sachant X.
On note que E(o(X)]Y) = a(Y) est la fonction de Y qui vaut E(o(X)|Y = v)
x

lorsque Y = y et E(¥(Y)|X) = B(X) est la fonction de X qui vaut E(¢(Y)|X =
lorsque X = x.

PROPOSITION 8.8. Pour toutes fonctions ¢ et telles que E|p(X)| < oo et E|(Y)] <
00, NOUS AVONS

EE(e(X)[Y)] =Ep(X) et E[E(¥(Y)[X)] =Eyp(Y).
DEMONSTRATION. Nous avons

EE(@X)Y)] = > py@E@X)]Y =y)

yey

= D o) D p(@)pxiy=y(@)
yey TEX

_ pxy_fvy)

N yezypy Z;( ele py(y)

= > > pl@)pxy(zy)
yeY zeX

23S ey (ey)
zeX yey

= Y e(@)Y  pxy(,y)
zeX yey

25" p@px (o)

= Ep(X)

Nous avons pu commuter les sommes en (a) car la série est absolument convergente. En
(b), nous avons fait usage de la Proposition 6.9. La seconde égalité se prouve de fagon
analogue. 0

8.3. Conditionnement dans le cas continu

Soit (X,Y) un couple aléatoire continu de loi Pxy (dzdy) = fxy(x,y)dzdy. On ne
peut plus considérer aussi simplement que dans le cas discret le conditionnement par
Y = y car pour tout y nous avons P(Y = y) = 0 du fait que Y est une variable continue.
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Nous allons donc introduire des notions analogues aux quantités discrétes sans les justifier
dans un premier temps. Nous en donnerons une justification un peu plus bas.

Pour tout y réel tel que fy(y) > 0, on définit les lois, densités et espérance condi-
tionnelles

Pxiy—y(dx) = fxpy_y(@)dz avec
59) Frvafe) = DT
(8.10) BN =1) = [ o) s o) dr
De fagon analogue, on définit pour tout = réel tel que fy(z) > 0,
Pyix=(dy) = fyix=.(y)dy avec
(5.11) frieaty) = P20
(5.12) BWOIX =) = [ )l dy

On remarque qu’il suffit que E|o(X)| < oo et E[(Y)| < oo pour que ces intégrales
soient absolument convergentes.

EXEMPLE 8.13. Le couple (X,Y) suit la loi uniforme sur le domaine 7' = {(x,y) €
R%0 < z < y < 1}, cest-a-dire que sa loi est Pxy(dzdy) = fxy(z,y)dxdy avec

fxy(z,y) =2 17(z,y) puisque [, drdy = fol [fxl dy} dx = fol(l —x)dr = [z —2%/2)} =
1/2 : laire du triangle T vaut 1/2.

1 /
|1—x
x._—_—
T |
l
0 |
r 1

Calculons la densité marginale fx. Pour tout z, fx(x) = QIR 1((zy)er) dy. Donc, pour
x &10,1], (z,y) €T, Vy € Ret fx(z) =0. Alors que pour tout 0 <z <1, (z,y) € T <
r<y<let fx(z) = 2fxl dy =2(1 — ). On a donc fx(x) = 1jp<z<32(1 — ), z € R.
Par conséquent, si 0 < x < 1, fy|x=.(y) = %, y € R. Laloi de Y sachant X = x est
donc la loi uniforme sur [z, 1]. On en déduit que pour 0 < z < 1, E(Y|X = z) = (1+2)/2.

DEFINITION 8.14. Pour toutes fonctions ¢ et 9 telles que E|p(X)| < oo et E|¢p(Y)| <
oo, on définit les variables aléatoires

E@@X)Y) = oY) oua(y) =E(@eX)Y =y),yeR
E@(Y)X) = B(X) ouf(z)=EWY)X =1x),zeR

et on les appelle espérance de p(X) sachant Y et espérance de ¢ (Y") sachant X.



8.3. CONDITIONNEMENT DANS LE CAS CONTINU 67

PROPOSITION 8.15. Pour toutes fonctions ¢ et telles que E|o(X)| < oo et E[p(Y)| <
00, NOUS aVONS

EE(p(X)Y)] = Ep(X) et ERE@Y)X)] = EH(Y).

DEMONSTRATION. Nous avons

E[E(p( / FrWE@X)|Y = y) dy

- / / o(2) fey (. y) ddy
R2
= /4P($) {/PX,Y(%Q) d?/} dx
x y

— [ @iz ds

= Eop(X)
Nous avons pu commuter les intégrales a l'aide de leur convergence absolue. La seconde
égalité se prouve de fagon analogue. 0

L’ensemble des définitions introduites en (8.9), (8.10), (8.11) et (8.12) est justifi¢ par
I'obtention de la Proposition 8.15 dont 1’énoncé est analogue a celui de la Proposition
8.8.

EXEMPLE 8.16 (Suite de 'Exemple 8.13). En appliquant la Proposition 8.15, on
obtient EY = E[E(Y|X)] = [,(1+ 2)/2fx(z)dx = fol 2221 — x) d fol(l —2?)dr =
) 215,

D’autre part, par symétrie on voit que fy(y) = fx(1 —y) = 2yl{o<y<1y de sorte qu’on
retrouve BY = [ yfy (y) dy = fol 22 dy = [2y3/3]) = 2/3.






CHAPITRE 9

Indépendance (revisitée)

Nous revenons dans ce chapitre sur la notion importante d’indépendance que nous
avons déja abordée au Chapitre 6.

Lorsque je lance deux fois de suite une piéce de monnaie en la faisant a chaque fois
tourner sur elle-méme un grand nombre de fois, je peux me dire avec confiance que ces
deux expériences sont indépendantes I'une de 'autre. En revanche, si en guise de second
lancer je me contente de retourner la piéce a I'issue du premier lancer, il est clair que les
deux expériences ne sont pas indépendantes.

Je lance maintenant ma piéce n fois consécutivement de sorte que je peux de prendre
pour univers de 'expérience 2 = {p,f}". On suppose que chaque lancer est indépendant
des autres, au sens habituel du terme. Ceci se traduit par le fait que chaque suite de lan-
cers w € {2 a la méme chance de se produire qu'une autre. On fait ici un raisonnement
intustif liant la notion ressentie d’indépendance a celle de symétrie. Ce raisonnement
n’est pas mathématique, mais il s'impose a notre entendement. Nous devons traduire
I'indépendance des lancers en travaillant, mathématiquement cette fois-ci, avec la pro-
babilité P qui est uniforme sur Q : P({w}) =27", w € Q.

EXEMPLE 9.1. J’ai une piéce de monnaie et un dé. Je lance d’abord la piéce, puis
le dé. L'univers de 'expérience est 2 = {p,f} x {1,2,...,6}. On suppose que ces deux
lancers sont indépendants I'un de I'autre de sorte que la probabilité P est uniforme sur

Q:P((p,1)) =--- =P((f,6)) = 1/12. On construit les variables aléatoires X et Y comme
suit :

[0 siwe{p} x{L,2,...,6} ] 0 siwe{p}x{1,2,3,4}
X(“)_{l siwe {ft x {1,2,...,6} ° V(@) =11 sinon '

On voit que {X = 0} et {X = 1} sont respectivement les événements qui correspondent
a 'obtention de pile et face. La loi de X est %((50 + 01) et celle de Y est %(50 + %(51.

Les variables X et Y ne sont pas indépendantes.

En effet, si je sais que Y (w) = 0, et qu’on me demande de parier sur la valeur de X (w),
j'aurai avantage a parier sur pile, ¢’est-a-~dire sur X (w) = 0. Ceci car Y (w) = 0 implique
que j’ai obtenu pile. Par conséquent, I'information Y (w) = 0 m’a permis d’obtenir une
information sur X (w).

Voici une autre maniére de voir que X et Y ne sont pas indépendantes. On me demande
de parier sur la valeur de Y (w). Sans information supplémentaire, j’ai intérét a parier
sur 1, puisque la loi de Y est %50 + %(51. En revanche, si je sais que j’ai obtenu pile, Y
vaudra 0 si mon dé me donne 1,2,3 ou 4, soit 4 chances sur 6. J’ai donc intérét a parier
sur Y(w) = 0. Une information sur X m’a permis de modifier mon pari concernant Y.
Ces deux variables ne sont donc pas indépendantes.
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9.1. Définition

A Taide de I’exemple suivant, nous allons justifier la définition mathématique de
I'indépendance de deux variables aléatoires X et Y.

EXEMPLE 9.2. On joue n + m fois a pile ou face. L’univers de notre expérience
est donc Q = {p,f}"*" et l'on note w; € {p,f} le résultat du i-éme lancer ainsi que
w = (w1, ,Wnim) € Q, la description compléte de I'expérience. Une notation bien
pratique est celle fournie par les variables aléatoires Z; : w € Q — Z;(w) = w; € {p,f},
1 <i<n+mainsi que Z = (Z;)1<i<n+m- On a évidemment Z(w) = w pour tout w € )
et Z; est le résultat du i-éme lancer.

On prend n = 3 et m = 10. Les variables aléatoires X et Y sont définies par

3 13

X=14) 1727 et V=143 172"
i=1 j=4
de sorte que X est une variable discréte uniforme sur {1,...,8} et Y est uniforme sur
{1,...,1024}. Puisque X et Y sont construites respectivements sur des tirages distincts,

les trois premiers pour X et les autres pour Y, ces variables sont indépendantes (au sens
intuitif). La définition mathématique de I'indépendance devra donc étre cohérente avec
cette constatation.
Calculons

P(X € AetY € B)

avec A C {1,...,8} et B C {1,...,1024}. L’espace Q est Q = {p,f}310 = {p,f}!3 et
toutes les réalisations ont méme probabilité : P(w) = 2713, pour tout w € Q. L’événement
(X =3)estégal a (Z) =1,2Zy =p,Z3 =1). De méme, (Y =6) = (Zy =p,Zs =1, 75 =

p, Z7 = --- = Zy4 = f). Et en explicitant tous les tirages, nous voyons que
(X =3) = (L1=12y=p,Z3="1,2Z4,...,Z14 € {p,f})
Y=6) = (Z1,20,Z5€{pf}, Za=p,Zs =f,Zs =p, Zr = -+ = Z1a = )
On en déduit immeédiatement que
(X=3Y=06)=(Z1=12y=p, Zs=1,2,=p,Zs =1, Zs =p, L7 =+ = Zyy =1).

Par conséquent nous avons P(X =3) =273 P(Y =6) =20 et P(X =3,Y =6) =
2713 11 en est de méme pour tous les événements élémentaires (X = z,Y = y), de sorte
qu’en notant #A et #B les cardinaux de A et B, on obtient

P(X €AY € B) = (#Ax#B)x23

(9.3) = (#Ax27%) x (#B x 271
= P(X € AP(Y € B).
Maintenant, considérons deux fonctions s : {1,...,8} = Ret¢:{1,...,1024} — R ainsi

que les nouvelles variables éléatoires S = s(X) et T' = #(Y). Puisque S ne dépend que
des trois premiers tirages et T' que des autres tirages, ces deux variables aléatoires sont
indépendantes (au sens habituel du terme). Pour tous C, D C R, en posant A = s71(C')
et B =1t"1(D), nous obtenons (S € C) = (X € A) et (T € D) = (Y € B). De sorte que

P(SeC,TeD) = P(XeAYeB)=P(XeAPY €B)
= P(S € O)P(T € D)
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ou la deuxiéme égalité est (9.3).
Cet exemple a préparé le chemin pour la définition mathématique suivante.

DEFINITION 9.4. (Variables indépendantes)

(1) Deux variables aléatoires X et Y sont dites indépendantes sous la probabilité P,
si pour toutes les réunions dénombrables d’intervalles A, B de R,

(9.5) P(X € A,Y € B)=P(X € A)P(Y € B).

(2) Plus généralement, k variables aléatoires Xy, ..., X} sont dites mutuellement
indépendantes sous la probabilité P, si pour toutes les réunions dénombrables
d’intervalles Ay, ..., Ay de R,

(96) P(Xl S Al, - ,Xk S Ak) = ]P(Xl S A1> . ]P)(Xk < Ak)

On omettra en général de rappeler que des variables qui sont indépendantes le sont
sous P. Mais il convient de garder a ’esprit que I'indépendance n’est pas une propriété
qui ne concerne que les variables aléatoires, mais en fait leur lien sous une probabilité P
donnée.

Revenons maintenant a ’Exemple 9.1. Puisque (X =0,Y =0) = {p} x{1,2,...,6},
nous avons P(X = 0,Y = 0) = 4/12. D’autre part P(X =0) =1/2 et P(Y =0) =4/12,
de sorte que P(X =0,Y = 0) # P(X = 0)P(Y = 0). On retrouve le fait que X et Y ne
sont pas indépendantes. En effet, il suffit pour cela que (9.5) soit invalidé pour un couple
A, B.

Nous aurons besoin par la suite du résultat préliminaire suivant.

LEMME 9.7. Pour que des variables aléatoires X, ..., X soient mutuellement in-
dépendantes sous la probabilité P, il suffit que (9.6) soit satisfait pour des intervalles
Al,...,Ak de R.

On peut méme choisir ces intervalles de la forme A; =] — 00, a;] avec a; € R, 1 <i < k.

On admet ce lemme dont la preuve est une jonglerie abstraite au sujet de la notion
de tribu.

9.2. Propriétés élémentaires

Nous revisitons ici la Proposition 6.5 et sa preuve. Nous commencons par remarquer
que des fonctions de variables indépendantes restent des variables indépendantes.

PROPOSITION 9.8. Soient X et Y des variables indépendantes ainsi que deux fonc-
tions @, : R — R suffisamment réguliéres (continues par morceaux, par exemple) pour
que S = p(X) et T = (YY) soient des variables aléatoires. Alors S et T sont des variables
indépendantes.

DEMONSTRATION. Soient C' et D deux intervalles de R. On a pris ¢ et ¢ suffisamment
réguliéres pour que ¢ }(C) C Ret ¢~1(D) C R puissent étre approchés par des réunions
finies d’intervalles disjoints. A savoir que (nous devons 'admettre au niveau de ce cours,
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mais ce qui suit est trés naturel) :
P(SeC)=P(X € }(0)) = Jim P(X € Un<rc 1f),

P(T € D)=P(Y €y YD) = Jlim P(Y € U< JE),

P(S € C,T S D) = Klim ]P)(X S |—|k<KIk ,Y c |—|l<LJl )

On a donc

P(S € C,T € D) = Klim P(X S |—|k<KIk ,Y € |—|l<LJl )

\4) : K L
= Jim Y PXxelfyeJd)
E<K,|<L

\9) : K L
= lim Y PX eI Py e
k<K,<L

L Ky 1 L
= I}EHOOZIP(X eI} )LILII;OZP(Y c Jb)
k<K I<L
— P(SeC)P(TeD).
L’égalité (a) est satisfaite car les intervalles sont disjoints et 1’égalité (b) est vérifiée grace
a I'indépendance de X et Y. Ce qui prouve I'indépendance sous P de S et T ([l

PROPOSITION 9.9. Soient X1, ..., X;an des variables mutuellement indépendantes
ainsi que p : R™ — R et 1 : R" — R deux fonctions suffisamment réguliéres (continues
par morceauz, par exemple) pour que S = p(Xy,..., X)) et T = V(Xpms1,- o, Xintn)
soient des variables aléatoires. Alors S et T sont indépendantes.

DEMONSTRATION. La preuve de cette proposition est analogue a celle de la proposi-
tion précédente, en un peu plus technique. Les intervalles IX et JF doivent étre remplacés
par des produits cartésiens d’intervalles. Nous omettons les détails. O

On rappelle maintenant le contenu des Propositions 6.16, 6.24 et 6.37.
PROPOSITION 9.10. Soient X etY deux variables indépendantes, discrétes ou conti-
nues.
(1) Alors pour toutes fonctions ¢ et ¢ telles que E|o(X)| < oo et Elp(Y)| < oo,
nous avons Elp(X Ji(Y)] < oo et Elp(X)i(Y)] = E[p(X)E[(Y)].
(2) SiE|X|* < 0o et E|Y|? < 0o alors Cov(X,Y) = 0.
PROPOSITION 9.11. Soient X1, ..., X1n des variables mutuellement indépendantes
ainsi que ¢ : R™ — R et 1p : R" — R deux fonctions telles que E|p(X7, ..., X)) < 00
et El(Xomgt, -y Xonn)| < 00. Alors, E(Jo(X1, ..., Xo) |0 Xmsts - -+ s Xingn)|) < 00 et

E[(p(XlaaXm)w(Xm—i-la>Xm+n)] :E@(Xl,..., )Ed)( m_;,_l,...,Xm_;’_n).
DEMONSTRATION. C’est une conséquence directe des Propositions 9.9 et 9.10. [
PROPOSITION 9.12. Soient X etY deux variables aléatoires indépendantes telles que
E|X|?> < 0 et E|Y|? < co. Alors, Var(X +Y) = Var(X) + Var(Y).
De facon plus générale, si Xy,...,X, sont des variables aléatoires mutuellement indé-

pendantes telles que E|X;|*> < oo pour tout 1 < i < n, alors Var(X; + -+ + X,,) =
Var(X;) + - -+ + Var(X,).



9.3. ECHANTILLONS 73

DEMONSTRATION. Il suffit de prouver la premiere partie car la seconde s’en déduit
aisément. Puisque X et Y sont indépendantes, X =X-EXetY =Y —EY sont
indépendantes par la Proposition 9.9. On a donc

Var(X +Y) = E(X +Y)?

E(X)?+ 2E(XY) + E(Y)?

E(X)? + 2E(X)E(Y) + E(Y)?
X)*+

= E(X)’+E(Y)
Var(X) + Var(Y)

—
S
=

I
=

ol nous avons invoqué l'indépendance de X et Y a I'égalité (a) et E(X) = E(Y) =0 a
Pégalité (b). O

9.3. Echantillons

On se donne une loi de variable aléatoire déterminée par la fonction de répartition F’
ainsi que X une variable aléatoire suivant cette loi.

DEFINITIONS 9.13.
(1) On appelle copie de X toute variable aléatoire X’ ayant la méme loi que X,
c’est-a-dire telle que X £ X

(2) On dit d’une suite finie (X7, ..., X,) qu’elle est indépendante pour signifier que
X1, ..., X, sont mutuellement indépendantes.

(3) On dit d’une suite infinie (X;);>1 qu'elle est indépendante pour signifier que
pour tout n > 2, la suite finie (X7, ..., X,,) est indépendante.

DEFINITIONS 9.14.

(1) On dit d’une suite finie (X7,...,X,,) qu'elle est un n-échantillon de (la loi de)
X si c’est une suite indépendante de copies de X.

(2) On dit d’une suite infinie (X;);>1 qu’elle est un échantillon de (la loi de) X si
pour tout n > 2, (Xy,...,X,) est un n-échantillon de X.

(3) On appelle moyenne empirique de (X, ...,X,) la variable aléatoire

1 n

PROPOSITION 9.15. Soit (X;);>1 un échantillon de la variable X telle que E| X |* < co.
Nous avons pour tout n,

EX, —EX ef VarX, = 2%

n
DEMONSTRATION. Par linéarité de 1’espérance,

_ 1 — 1
EX,=-) EX;, = -nEX =EX.
5 2 BXi=1n
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D’autre part, avec les Propositions 3.32 et 9.12, nous voyons que

— 1 " 1 & n VarX
VarX, = ﬁVar (; Xi> = s ;VarXi = ﬁVarX = —

Ce qui achéve la preuve. O

Bien que simple, le lemme suivant a des conséquences importantes en théorie des
probabilités.

LEMME 9.16.

(1) Soit Y une variable aléatoire positive. Alors, pour tout a > 0,

EY
PY >a) < —.
a
(2) Soit X une variable aléatoire de variance o® finie. On note p = EX. Pour tout
0 >0,
P(|X — p| > 6) < 0?/6%

DEMONSTRATION. e Preuve de (1). Du fait que Y > 0, nous avons alyy>q < Y. En
en prenant l'espérance, nous obtenons Elal{y>q| < EY, cest-a-dire aP(Y > a) < EY,
qui est le résultat annoncé.

e Preuve de (2). Puisque P(|X —p| > §) = P(|X — pu|? > §2), c’est une application directe
de (1) avec Y = | X — pl?, de sorte que EY = o2 et a = §°. O

THEOREME 9.17 (Loi faible des grands nombres). Soit (X;);>1 un échantillon de la
variable X de variance o finie. On note = EX. Pour tout § > 0 et tout n > 1,

2
P(|X, — p > 8) < —

nd?’
En particulier, pour tout § > 0,
(9.18) P(| X, —ul >4 — 0.

DEMONSTRATION. L’inégalité est une conséquence immeédiate de la Proposition 9.15
et du Lemme 9.16. La limite s’en déduit. 0

En passant au complémentaire, on voit que (9.18) équivaut a
P(|X, —pul <6) — 1, ¥§>0.

Puisque 6 > 0 peut étre choisi arbitrairement petit, ceci nous dit que lorsque n tend vers
I'infini, la moyenne empirique X, qui est une variable aléatoire, tend vers la moyenne
théorique u = EX, qui est un nombre non-aléatoire. Ce résultat théorique est fondamen-
tal, on 'appelle la loi des grands nombres.

Il permet entre autre, sur la base de I'observation d’un grand échantillon de X d’es-
timer la moyenne théorique p© = EX que l'on suppose inconnue a l'aide de la moyenne
empirique observée X, (w). C’est le principe de I'inférence en statistique mathématique.

En fait, 'observation d’un grand échantillon de X permet aussi d’estimer la loi de X
et a la limite, 'observation d’un échantillon infini de X permettrait (en théorie, bien str)
de reconstruire des approximations arbitrairement fines de la loi de X. C’est ce qu’énonce
le résultat suivant.
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THEOREME 9.19. Soit (X;);>1 un échantillon de la variable aléatoire X sans aucune
hypothése supplémentaire (pas besoin de variance finie, ni méme de E|X| < 00). Consi-
dérons K intervalles IV, ... 15 par exemple une partition dont la réunion recouvre
les valeurs possibles de X. On note pour tout 1 < k < K et tout n > 1,

) #{1<i<n X, € I}

=7
n

la proportion observée de valeurs de l’échantillon "tombées" dans I'®. Nous avons la loi
des grands nombres suivante :

n—oo

P ( max [p —P(X € I™)| < 5> — 1, V6>0.
1<k<K

DEMONSTRATION. On note pour tout 1 < k < K et tout ¢ > 1,

1 siX;elI®
v =10 = { o S

A k fixé, la suite (Y;(k))izl est un échantillon de la variable Y'*) qui suit la loi de Bernoulli

B(p®) avec p®) = P(X € I®)) = E(Y®). D’autre part, piy) = V;k) est la moyenne
empirique des Yi(k), elle obéit donc a la loi des grands nombres énoncée au Théoréme
9.17. Par conséquent, pour tout k,

P([p) —P(X € I®)| >6) — 0, V§>0.

n—oo

OI‘, (maXlngK |]3£Lk) — IED(X € I(k))| > 5) = UlSkSK <|]37(7,k) — P(X S I(k))‘ > (5) . DOHC,

k) _ (k) < A(k) _ (k)
P <1r§r}€aé)§(\pn P(X e I®)| > 5) < I;KP(]]?” P(X € I®)| > 9)

— 0.
n—oo

Ce qui achéve la preuve de la proposition. 0

Les Théorémes 9.17 et 9.19 qui sont des lois faibles des grands nombres, admettent
une amélioration dont la preuve dépasse le niveau de ce cours. Il s’agit de la loi forte des
grands nombres.

THEOREME 9.20 (Loi forte des grands nombres). Soit (X;);>1 un échantillon de la

variable aléatoire X telle que E|X| < oo. Alors il existe une partie N € A telle que
P(N) = 0 (dite P-négligeable) telle que

lim X (w) =EX, pourtoutw e Q\ N.

n—oo
En particulier, sans supposer que E|X| < oo, en notant pour tout n > 1,
R #{1<i<mX(w)el
pale) = FEEIERX) € 1)

la proportion observée de valeurs de [’échantillon "tombées” dans un intervalle donné I,
il existe un ensemble P-négligeable N tel que

lim p,(w) =P(X € 1), pour toutw € Q\ N.







CHAPITRE 10

Construction d’une variable aléatoire réelle générale

Donnons-nous une fonction F' candidate a étre une fonction de répartition, c’est-a-
dire qui satisfait les conditions (1), (2) et (4) de la Proposition 2.8. Nous allons décrire
un espace probabilisé (€2, 4, P) et construire explicitement une variable aléatoire dont
la fonction de répartition est effectivement F. Nous commencons par le cas particulier
d’une répartition uniforme sur [0, 1].

10.1. Construction d’une variable aléatoire continue uniforme

Soit X une variable aléatoire uniforme sur l'ensemble des chiffres : {0,1,...,9}.
Construisons un échantillon (X,,),>1 de X, c’est-a-dire une suite (X,,),>1 de copies in-
dépendantes de X. Pour cela, on prend pour €2 I'ensemble des suites w = (wy,ws,...) a
valeurs dans {0,1,...,9} et on définit

Xp(w)=w, €{0,1,...,9}, weQn>1

qui représente le résultat du n-iéme tirage. On prend pour A la plus petite tribu qui
contient toutes les parties de 2 de la forme

(XieA}, n>1,4cC{0,....,9,1<i<n
=1

et on choisit une mesure de probabilité P qui satisfait

P (ﬂ{Xi € Ai}> — H #g‘gi)

i=1

 Vn>1,A.,..., A, c{0,...,9).

Cette situation est celle de I’équiprobabilité des événements élémentaires, puisqu’il y a
[T, #(A;) nombres parmi les 10" nombres entiers de [0, 10" — 1] dont le i-éme chiffre
est dans A; pour tout 1 <i <mn.
On admet qu’une telle mesure de probabilité sur (€2, .4) existe et est unique.

Pour tout n > 1, on définit la variable aléatoire

Up(w) = 0,w;...w, (développement décimal)
= Z Wi 10_1
i=1

Il est clair que U,, peut prendre 10" valeurs dans [0, 1[. Calculons sa fonction de réparti-
tion. Bien str, Fy, (u) =0, si u <0 et Fy,(u) =1 si u > 1. Soit maintenant 0 < u < 1.

7
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En notant u = 0, x125 ... son développement décimal,
FUn (u) = ]P><Un S U’)

= P({weQ; O,wl...wngo,xl...xnxnﬂ...})

- 1@({)(1 <o —DUHX =2} N {Xs <mo— 1} U---
U{Xi =z} n{ Xy =2 0 {X, <z, — 1}
WX =21} NN {X, = xn}]>
= 107 s +10 %29 + - -+ 10"z, + 107"

= O, X129 ... Ty + 107,

\
Fee-
10
) |
FUn/\"‘ J\u Fy
|
0 1 u
0 si ©u<0
Par conséquent, lim Fy, (u) =G(u) =49 u si 0<u<1 , Vu € R. Posons
e 1 siu>1
(10.1) Uw) = lim U,(w) =0,wwy ..., w €.

Puisque sup,cq |Un(w) — U(w)| < 107", pour tout € > 0 et tout entier n suffisamment
grand pour que 107" < ¢, nous avons : {U, <u—c} C{U <u} C {U, <u-+e}. Dou
il vient que Fy, (u —¢) < Fy(u) < Fy,(u+ ¢€). Ce qui en faisant tendre n vers I'infini
nous donne G(u —¢) < Fyy(u) < G(u+¢€), puis en faisant tendre e vers zéro, nous donne
FU = (. Soit

0 st vu<0
Fy(uy=< uw si 0<u<1l , wekR
1 si u>1

La loi de U, spécifiée par sa fonction de répartition Fys, est appelée loi uniforme sur [0, 1].
Sa fonction de densité est donnée par

ﬁmoz{lmuemﬁ

0 sinon
On vient de construire U a l'aide d’une infinité dénombrable de tirages indépendants
uniformes dans {0,...,9}.

, u€eR.

REMARQUE 10.2. Lors de la preuve de la Proposition A.8, on montre que le procédé
de construction (10.1) atteint tous les réels de [0, 1] une seule fois a I'exception de certains
qui sont atteints deux fois : les éléments de D, 'ensembles des nombres dans [0, 1] qui
admettent un développement décimal fini. Or, il est aussi prouvé que D est dénombrable
de sorte que P(U e D) = > P(U =) =", .0 = 0 ot 'avant-derniére égalité vient
de P(U = x) = 0 pour tout x et la derniére a du sens car D étant dénombrable, »
est une série numérique.

zeD
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10.2. Construction d’une variable aléatoire réelle générale

La variable aléatoire U va nous permettre de construire toutes les autres variables
aléatoires sur (92, .4,P). Le procédé de construction est le suivant.

THEOREME 10.3. Soit une fonction F : R — [0,1], croissante et continue & gauche
telle que lim,_,_o, F(x) =0 et lim,_,o F(xz) = 1. On définit son inverse sur |0, 1[ par

(10.4) F~'(u) :=inf{z € R; F(x)>u}, u€l0,1].

On considére U ~ U(0,1) une variable aléatoire sur (2, A,P) de loi uniforme sur |0, 1].
Alors

(10.5) X =FYU)

est une variable aléatoire sur (Q, A,P) de fonction de répartition F.

PREUVE DU THEOREME 10.3. Rappelons que pour tout 0 < u < 1, Fy(u) = P(U <
u) =PU < u) =u.

Si z est un point de continuité de F, alors F~(u) < z <= u < F(z), de sorte que

Fx(z) = P(X <2)=PF YU)<2)=PU < F(z))
= Fy(F(z)) = F(x)

On note F(a%) et F(z™) les limites a droite et & gauche de F' en x (ces limites existent
puisque F' est supposée croissante). Si x est un point de discontinuité de F, alors F(z~) <
F(z) = F(z%), F7l(u) <z <= u < F(z7) et Fl(u) =2 < F(z7) < u < F(x).
Donc,

Fx(z) = P(FT(U) <a)+P(F(U) =)
= PU<F(z7))+P(F(z7) <U < F(x))
= F(a7)+[F(z) - F(z7)] = F().
Ce qui achéve la preuve de F'y = F et donc de la proposition. 0

Remarquons que nous avons déja montré & la Proposition 2.8 que toute fonction de
répartition jouit des propriétés imposées & F' dans le Théoréme 10.3. Nous en déduisons
le résultat suivant.
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COROLLAIRE 10.6. Une fonction F' est la fonction de répartition d’une variable aléa-
toire si et seulement si F' : R — [0,1] est croissante, continue o gauche et satisfait
lim, o F(z) =0 et lim, o F(z) = 1.

EXEMPLES 10.7.

(a) Loi de Bernoulli B(p). Nous avons F'(z) = qljo1((z) 4+ plj,o(x) avec p+¢q = 1, dont

Iinverse est F'~!(u) = 1)51)(u), 0 < u < 1.

0 siU €]0,q]

1 siU €lq,1]
de [0,¢] est ¢ =P(X =0) et que celle de g, 1] est 1 —qg=p=P(X =1).

(b) Loi exponentielle £()). Nous avons F(z) = 1(,503(1 — e7**) de sorte que F~!(u) =

—In(1 — w)/\, u € [0,1]. On voit donc que X = —1In(1 — U)/A suit la loi E(A). Or

UZ£1-U, donc X = —In(U)/X ~ E(N).

Par conséquent X = suit la loi B(p). On remarque que la longueur

Attention, dans (10.5) F~! n’est pas I'inverse traditionnel de F' mais seulement son
inverse généralisé. En particulier il n’est pas vrai en général que F(X) = U, c’est-a-dire
que F(X) soit une variable aléatoire uniforme sur (0, 1).

EXERCICE 10.8.

(a) Soit X ~ B(2,1/2) la variable aléatoire de I'Exemple 2.1, montrer que F'(X) n’est
pas uniforme sur (0,1).
Calculer sa loi.

(b) Soit X une variable aléatoire continue de fonction de répartiton F, montrer que F'(X)
est uniforme sur (0, 1).

SOLUTION. e Solution de (a). Puisque #(X(2)) = #({0,1,2}) = 3 et #(U(Q)) =
#([0,1]) = oo, #(F(X(€))) < 3 donc F(X) ne peut pas avoir la méme loi que U.
Plus précisément, Px = 10p0) + 30r(1) + 10p@) = 30174 + 3034 + 301.

e Solution de (b). Au début de la preuve du Théoréme 10.3, nous avons vu que si z est
un point de continuité de F, alors pour tout 0 < u <1, FF'(u) < x <= u < F(x). Or,
sous notre hypothése, I’ est continue partout, donc pour tout 0 < u <1,

P(F(X)>u) = P(X > F(u))
W p(x > Fl(u)
1— F(F~!(u))

—
=
=

—

21—

N2

ou l'égalité (a) est vraie car X est une variable continue, (b) vient de la définition de la
fonction de répartition F' et (c) se vérifie comme suit.

Pour tout 0 < u < 1, F(F~Y(u)) = F(inf{z; F(z) > u}) = lim,_.,- F(z) := F(a™) ou
« est I'unique nombre tel que F(a™) < u < F(«a). Or F est supposée continue, donc
F(a™) = F(a), ce qui implique que F(a~) =u et F(F1(u)) = u.

On en déduit que P(F(X) < u) =1 —lim,_,,-(1 —v) = 1 — (1 —u) = u pour tout
0 <u <1, ce qui montre que F'(X) suit une loi uniforme sur (0, 1). O



CHAPITRE 11

Simulation d’une variable aléatoire

Il existe des algorithmes qui générent des suites de tirages pseudo-aléatoires indépen-
dants de loi (0, 1) uniforme sur [0, 1]. La plupart des calculettes permettent d’exécuter
de tels programmes, souvent baptisés RAND!. En général leur conception repose sur des
propriétés arithmétiques de certaines suites récurrentes. Ces algorithmes sont détermi-
nistes, c¢’est-a-dire qu’il n’ont rien d’aléatoire. Si vous utilisez le méme algorithme avec la
méme donnée initiale, il vous donnera toujours la méme suite de nombres. De plus, ces
suites de tirages de valeurs numériques sont périodiques, mais avec une période extréme-
ment grande. C’est la raison pour laquelle ces générateurs sont appelés pseudo-aléatoires
plutot qu’aléatoires.

11.1. Description rapide de certains générateurs

Une famille de générateurs populaire est celle des générateurs congruentiels linéaires.
IIs générent des suites de nombres entiers (z,),>1 dans 'ensemble {0,...,m — 1} ou m
est un grand nombre. Il suffit ensuite de prendre w, = z,,/m pour obtenir une suite de
tirages (uy,),>1 dans [0, 1] dont les valeurs sont des nombres arrondis avec une précision
de l'ordre de 1/m. La suite (z,,),>1 est solution de I’équation de récurrence

Tpni1 = ax, +b modulom, n >0

en partant d’une donnée initiale entiére xy. On rappelle que x = r modulo m signifie
que 7 est le reste de la division euclidienne (celle de la petite école) de x par m. En
d’autres termes x = gm + r avec un quotient ¢ entier et 0 < r < m — 1. On constate
immeédiatement qu’une telle suite est périodique (de période au plus m). Il faut donc que
m soit trés grand. En choisissant intelligemment a et b, cette période est effectivement
m. D’autre part il faut aussi choisir adéquatement les nombres a,b et m pour que la
suite simule correctement de trés longues séquences (de l'ordre de m/10) de tirages
uniformes et indépendants. En fait, le choix de ces paramétres est loin d’étre évident et
est encore I'objet de recherche. La fonction rand de Scilab utilise les valeurs m = 231,
a = 843314861 et b = 453816693. La fonction grand de Scilab est basée sur un type
de générateur déterministe plus performant dont la période 2'997 — 1 est fabuleuse. La
plupart des générateurs utilise la date et I’heure de votre ordinateur pour décider de la
valeur initiale xg.

11.2. Simulation. Principe et applications

Nous appellerons U le résultat d’un tirage de loi ¢(0,1). Puisque les ordinateurs
ont une précision finie, les valeurs u,, que nous fournit notre générateur sont des tirages

1En anglais, au hasard se dit at random qui vient de ’ancienne expression frangaise "aller & randon"
qui signifie avancer de fagon désordonnée et que ’on retrouve dans randonnée.

81
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uniformes sur un ensemble de grand cardinal et nous utilisons en fait une approximation
U, de la variable U dans le méme esprit que (10.1).

Principe général de la simulation. Ce principe est une application directe du
Théoréme 10.3. Soit Uy, Us,... un échantillon de la loi uniforme ¢(0,1). Alors, grace
au Théoréme 10.3, on sait que, F'~! désignant I'inverse généralisé de la fonction de
répartition F' de la loi de X, voir (10.4),

XZ' = Fﬁl(Ui), 7/2 1

définit un échantillon de la loi de X. C’est-a-dire une famille de copies indépendantes de
X. Ce principe s’applique donc lorsqu’on connait une expression de F~1.

Variables discrétes. Dans le cas d’une variable discréte, le principe précédent cor-
respond & une manipulation intuitivement claire que nous allons décrire. La méthode est
simple.

La variable discréte X que nous souhaitons simuler prend ses valeurs dans {zy; k € K}
avec K C {1,2,...}. Sa loi s’écrit ), - Prds,. On suppose sans perte de généralité que
pr > 0 pout tout k.

On partitionne l'intervalle |0, 1] de sorte que

10,1} = |_| Jug—1, g

keK
ZkeK Pe=1
b1 D2 Pk
- > -~
0 U Ug Uk—1 Uk 1

avec ug = 0 et up = 2199 pi, k € K. La probabilité que la variable U de loi uniforme
sur (0,1) tombe dans k-iéme boite By =|uy_1, ux] est
]P)(UGBk) :P<uk_1 <U§uk):uk—uk_1 = Pk, ke K.
La variable
(11.1) X =) wlwen,
keK
qui vaut @y, si et seulement si U € By, k € K a pour loi ), _, PO,
EXERCICE 11.2. Montrer que la variable X définie par (11.1) satisfait 'égalité (10.5) :
X = F~(U), du Théoréme 10.3.
EXEMPLES 11.3.
(a) Pour simuler un tirage du jeu de pile ou face il suffit de décider pile si U € [0,1/2] et
face si U € [1/2,1].
(b) Pour simuler la variable aléatoire X de I’Exemple 2.6, on décide par exemple :
X(w)=0siU(w) € [0,1/4], X(w) = 1si U(w) € [1/4,3/4], X(w) =2 si U(w) €
(3/4,1].
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Ou bien, X (w) =0si U(w) € [0,1/8[U[3/4,7/8[, X(w) =1siU(w) € [1/8,1/2][U[7/8,1],
X(w) =251 U(w) € [1/2,3/4]. Mais c’est moins pratique.

(c¢) Pour simuler le premier instant X d’apparition de pile lors d'une suite de lancers
indépendants d'une piéce que nous avons rencontré a 'Exemple 2.12-(b), on peut
inverser la fonction de répartition : X(w) = 0 si U(w) € [0,1/2], X(w) = 1 si
Uw) € [1/2,3/4], X(w) =2si U(w) € [3/4,7/8], ...

Ou bien on peut décomposer U(w) en base 2 et choisir pour X (w) la place de la
premiére apparition de 1 dans cette décomposition.

Variables exponentielles et variables de Poisson. Nous avons vu a I’Exemple
10.7-(b) que

(11.4) T =—1In(U)/A
suit une loi exponentielle £(A) lorsque U est une variable uniforme sur [0,1]. Or le
générateur rand produit des réalisations indépendantes Uy, Us, ... de variables de loi

U(0,1) uniforme sur [0,1]. Par conséquent (7;);>1, ou T; = —In(U;)/A, est une suite de
variables indépendantes de loi £(\). La suite croissante (.S,,),>; définie par

décrit ce qu’on appelle un processus de Poisson de paramétre \. Les S,, sont les instants
de réalisations de certains événements alors que les T} sont les temps d’attente entre deux
événements consécutifs.
Par exemple, les instants de désintégration d’un corps constitué d’un élément radioactif
de composition pure sont trés bien décrits par une telle suite aléatoire. Le paramétre de
fréquence A est alors proportionnel a la masse du corps et inversement proportionnel a
la période de demi-vie de ’élément.

Soit N le nombre d’occurences d’événement pendant l'intervalle de temps [0, 1]. En
d’autres termes, N est spécifié par :

(115) Sy <1< SN—H-

On peut montrer que N est une variable aléatoire de Poisson de parametre A. De fagon
plus générale, le nombre d’événements pendant un intervalle de temps [s,t] est une
variable de Poisson de paramétre (t—s)A. Cette propriété permet de simuler une variable
N de Poisson P(A). En effet, (11.5) équivaut a

N+1 N
H Ui<e < HUZ-.
=1 =1

De sorte que N + 1 est le nombre de fois qu'’il faut multiplier entre eux des U; ~ U(0, 1)
indépendants, pour passer pour la premiére fois en dessous de e ™.

Cette méthode de simulation d'une variable de Poisson est plus performante que celle
basée sur le principe général que nous avons présentée a la Section 11.2.

Variables normales. On appelle couple aléatoire normal standard un couple (X,Y")
de variables aléatoires indépendantes normales standard X,Y ~ N(0,1). L’application
directe du Théoréme 10.3 est compromise par le fait qu’il n’existe pas d’expression ana-
lytique de la fonction de répartition de N'(0,1). A fortiori, nous n’avons pas d’expression
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explicite de sa fonction réciproque. Nous allons toutefois contourner ce probléme en ré-
solvant I'exercice suivant.

EXERCICE 11.6. Soit (X,Y) un couple normal standard. On définit (R, ©) comme
étant les coordonnées polaires de (X,Y), c’est-a-dire

X = Rcos©O
Y = Rsin®

avec R>0et 0 <O < 2.

Y

0 R

Montrer que R et © sont des variables indépendantes telles que R? ~ £(1/2) et © ~
U(0,2m).

SOLUTION. La densité de la loi de (X,Y) est fxy(z,y) = %6_(:62—"_1/2)/2 et notons
g(r,0) celle de (R, ©), si elle existe. Soit T" la transformation inverse de (r,0) — (z,y) =
(rcos@,rsinf) de sorte que (R,0) =T(X,Y).

On se donne ¢ une fonction bornée réguliére quelconque sur [0, co[x [0, 27[. Nous avons

Ep(R,©) = T(X,Y))

— // _(‘T2+y2)/2 dl*dy
RQ

_ / / o(1.0) "2 rdrdd
[0,00[x[0,27] 2m

= // (r,0)g(r,0) drdd

avec g(r,0) = go(0)gr(r) ot go(0) = 5=1p2+((0) et gr(r) = 1[0700[(7“)7“6_7“2/2, en effectuant
un changement de variables en coordonnées polaires a ’avant-derniére égalité. Puisque
g a la forme produit, R et © sont indépendantes de densité gr et go. Les variables
R? et © sont donc aussi indépendantes. Clairement, © ~ U(0,27) et pour tout ¢ > 0,
P(R? <t) = IP’(R <Vt = f‘/i “*/2pdr = [/ e~*/?ds/2 en faisant le changement de
variable s = r2. On voit donc que la densité de la loi de S = R? est 1jo[(s ) —s/2,
c’est-a-dire R2 ~ E(1/2). D

11 suffit maintenant de simuler (R, ©) a I'aide d’un couple (U, V) de variables indé-
pendantes distribuées uniformément sur [0, 1] dont la réalisation est donnée par deux
valeurs consécutives du programme RAND. On prend alors

R = /-2InU
O = 27V
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ou l'on a utilisé (11.4) dans le calcul de R et (4.6) dans celui de ©. Finalement, nous
venons de montrer que le couple (X,Y’) donné par

X = v—2InUcos(27V)
Y = v—2lnUsin(27V)

est un couple normal standard. Bien sir, avec un échantillon (U;);>1 de U(0, 1),

<\/—2 U, cos(2nUs), v/—2In U, sin(2r05),
vV —2InUs cos(2nUy), v/ —21In Ussin(27Uy), . . )

forme un échantillon de N(0, 1).
D’autre part, si Z ~ N(0,1), on sait que X = m + ¢Z suit la loi normale A'(m,s?). On
en déduit que

<m + o+/—21nU; cos(2nUs), m + o/ —21n U, sin(27Us),
m + ov/—2InUs cos(2nUy), m + 04/ —21n Us sin(27Uy), . . . >

forme un échantillon de AN (m, o?).

11.3. Histogrammes

Un générateur rand parfait devrait produire une suite de réalisations de variables
aléatoires

(1) de loi U(0,1)
(2) qui sont mutuellement indépendantes.

Mais qu’est-ce que cela signifie et comment s’en assurer ? En ce qui concerne I'indépen-
dance, le probléme est assez délicat et nous ne ’aborderons pas ici. Disons seulement
qu’il existe des tests statistiques d’indépendance et qu’il est recommandé que les géné-
rateurs pseudo-aléatoires passent ces tests avec de faibles erreurs de premiére et seconde
espeéces.

Revenons au premier point, a savoir que la loi du pseudo-échantillon soit bien uniforme.
Puisque nous ne sommes pas en mesure de produire un argument de symétrie comme
lors d’un jeu de pile ou face, notre seule facon de comprendre ce que signifie suivre une
loi donnée (ici, uniforme) est de se référer a une interprétation fréquentielle. A savoir que
si I'on est face a un trés grand nombre de réalisations consécutives, ces tirages se laisse-
ront classés avec des proportions observées qui sont proches des proportions théoriques
attendues. Par exemple, si 'on découpe le segment [0, 1] en 100 sous-intervalles de méme
longueur et qu’on observe 40 000 de réalisations, on s’attend a ce qu’il y ait a peu prés
40 000/100=400 nombres dans chacuns des sous-intervalles, et ce avec des fluctuations
typiques de ce que la théorie des probabilités prévoit, ici de I'ordre de £20; on pense en
particulier au théoréeme central limite qui quantifie ces fluctuations lorsque la taille n de
I’échantillon est grande.

Dans le sous-intervalle [a, b] on attend donc une proportion (b —a)/(1 —0) =b—a de
tirages U (0, 1) lorsque n est grand. C’est ce dont nous assure la loi des grands nombres
et que allons tester en construisant des histogrammes.
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On partitionne un intervalle contenant toutes les valeurs possibles de la variable X
en un nombre fini K de sous-intervalles [ay_1,ax[, 1 < k < K. Les sous-intervalles (ou
classes) sur les bords pouvant éventuellement ne pas étre bornés. Par exemple, si X est
une variable binomiale B(m, p), elle prend a priori les valeurs {0, 1,...,m} et on pourra
considérer les classes [—0.5,0.5[,[0.5,1.5[,... [m — 0.5,m + 0.5] qui encadrent de fagon
symétrique les valeurs effectives de X.

On observe un échantillon de X de taille n, ¢’est-a-dire les réalisations r; = X (w), ..., x, =
X,(w) de la suite de copies indépendantes X7, ..., X, de X. On note py la proportion
de z; dans la k-iéme classe [ag_1, ax[, soit

A BN
Pr(x1, ..., 2,) = - Z lclap vy, 1<k <K
i=1

Par définition, Ihistogramme des observations est la figure suivante, ot iy, est calculé de
telle sorte que l'aire au-dessus de la k-iéme classe soit p.

o
Dk
0" .. a1 g Grar !
Histogramme d’un échantillon
C’est-a-dire
(11.7) b gy = Do) e

A — k-1

Supposons que X soit une variable de densité fy. On sait que
ag
pr = P(X € |ag_1,ax]) = / fx(z)dx,
ap—1

de sorte que py = (ax — ax—1)hg en posant

ag
o S (r)dx

(11.8) hk:f’“‘L, 1<k<K,
ap — Qg—1

qui n’est autre que la valeur moyenne de fx sur la classe [ax_1, ax[. En tracant le graphe
des hy en fonctions des classes [ag_1, ax[, on obtient I’histogramme théorique suivant.
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h / fX
/

/ Dk

’7[

0 X
e ar—1 A Qg1 A

Histogramme théorique

La similarité des formules (11.7) et (11.8) justifie le mode de construction des histo-
grammes d’échantillon. En effet, la courbe de 'histogramme théorique h est une simpli-
fication de la courbe de densité fx qui ne retient que 'information d’appartenance aux
classes [ay_1, ax[. D’autre part, avec la loi forte des grands nombres énoncée au Théoréme
9.20, on sait que pour tout 1 < k < K, et P-presque toute réalisation w,

lim hg(X1(w), ..., Xn(w)) = hy.
Par conséquent, lorsque n et K sont grands, I’histogramme observé
v h(Xy, LX) (@) = Y RN (XL X)L ()
1<k<K
est proche de la densité théorique = — fx(x).

On wvoit donc que si l'on sait que les (X;)1<i<n sont bien des copies indépedantes de
la loi de X, I’histogramme donne une approximation raisonnable de la densité fx lorsque
K et n sont grands.

Les figures suivantes sont les histogrammes a 20 classes équilibrées de 100, 1000,
10000 et 100000 tirages uniformes effectués a 'aide du générateur rand de Scilab.

n = 10000 n = 100 000
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La ligne horizontale est a I'altitude 1, c’est la densité théorique de ¢(0, 1). Attention,
les échelles verticales different d’une figure a l'autre.

EXEMPLE 11.9. Soit la variable aléatoire X a valeurs dans [0, 2] de densité
fX(.’L') = 1[02](1‘)%/2, r € R.
Sa fonction de répartition vaut Fy(z) = 2%/4 pour 0 < x < 2 et sa fonction réciproque
est Fy'(u) = 2y/u, 0 < u < 1. De ce fait , avec U ~ U(0,1), la variable aléatoire 2v/U

a méme loi que X, ce qui s’écrit X £ 24/U. Les histogrammes suivants de 100, 1000 et
30000 copies indépendantes de X ont été obtenus avec rand.

ol | ont]

n = 100 n = 1000

n = 30000

On constate & nouveau que plus n est grand, plus 'histogramme est proche du graphe

de la densité fx, qui est ici représenté par le segment de droite oblique d’équation y =
x/2.
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Convergence des variables aléatoires
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CHAPITRE 13

Inégalités de convexité

On s’intéresse ici a un lien entre les probabilités et les fonctions convexes. Les notions
de base concernant la convexité sont rappelées & I’Annexe D.

Soient z,y € R? et 0 < ¢ < 1. La mesure de probabilité sur R? : (1 — )8, + ¢, est
la loi de Z; = { ; ZZEZ E giggzgﬁg il —t) , voir les Remarques 3.7-(2&3) au sujet
des variables discrétes a valeurs dans un espace vectoriel. On a E(Z;) = (1 —t)z + ty, de
sorte que la définition (D.3) de la convexité de la fonction ¢ sur la partie convexe C' de
R? se rééerit

p(EZ;) < Eo(Zy),
pour tout 0 < ¢ < 1. Cette inégalité est en fait un cas particulier du résultat général
énoncé plus bas en (13.4).

LEMME 13.1 (Variable discréte). Soit X une wvariable aléatoire discréte a valeurs
dans une partie convexe C' de RY telle que E|| X|| < oo. Si de plus l'une des propriétés
suivantes est satisfaite

— C est un ouvert

- C est un fermé

— X prend un nombre fini de valeurs
alors, EX € C.

DEMONSTRATION. Si X prend un nombre fini de valeurs, EX =" _ . p,x, est une
combinaison linéaire finie et on montre par récurrence a l’aide de la définition (D.2) que
> nen Pnty € C. Par exemple avec N = {1,2,3},

2 b3
To +
LP2 + D3 P2 + p3

v~

eC

P1T1 + Paxe + p3xs = p121 + (P2 + p3) T3

g

eC
et ainsi de suite pour un nombre fini de valeurs. Lorsque N = {1,2,...} est infini,
nous avons en posant m, = » . p,, EX = D nz1 Pnln = > o Pn@n Do Pnn =
T Doy %xn+2n>m Pnn. Or, " Lo, € C puisque > 77:—;; =1, limy 0o T = 1
et limy, oo Yo Prn = 0. Donc, EX appartient a la fermeture de C' dans R,
Si C' est fermé, nous venons de montrer que EX € C.
Si C est ouvert, il est égal a son intérieur. Donc x; est dans l'intérieur de C. On en

déduit que EX = p1x1 + Y, ., pn®y est dans l'intérieur de C; donc dans C. O
EXERCICE 13.2. Justifier les derniéres lignes de la preuve précédente.

PROPOSITION 13.3 (Inégalité de Jensen). Soient ¢ : C' — R une fonction convexe
différentiable sur la partie ouverte convere C de R* et X une variable aléatoire a valeurs
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92 13. INEGALITES DE CONVEXITE

dans C telle que E|lp(X)| < 0o et E||X|| < oo. Alors,
(13.4) p(EX) < Ep(X).

DEMONSTRATION. Du fait des hypothéses E|p(X)| < oo et E||X|| < oo les espé-
rances que nous considérons sont bien définies. Nous avons avec la Proposition D.5 :
o(x) > pla) + (¢'(a),z — a) pour tous x,a € C. Puisque C est un ensemble convexe,
le Lemme 13.1 nous dit que EX appartient aussi & C. En prenant a = EX dans I'in-
égalité précedente, nous obtenons ¢(X) > ¢(EX) + (¢'(EX),X — EX). En prenant
les espérances, la linéarité et la croissance de ’espérance nous assurent de Ep(X) >
P(EX) + (¢'(EX),E(X — EX)) = ¢(EX) puisque E(X — EX) = 0. Ce qui acheve la
démonstration. 0J

REMARQUES 13.5.

(1) Le Lemme 13.1 reste vrai pour toute partie convexe C' de R?. La preuve de
cette extension nécessite une étude des propriétés élémentaires des ensembles
convexes de R? que nous ne ferons pas ici.

(2) L’inégalité de Jensen reste vraie lorsque la fonction convexe ¢ n’est pas dif-
férentiable et C' n’est pas un ouvert. Il suffit pour cela de tenir compte de
la remarque (1) précédente et de remplacer ¢(x) > p(a) + (¢'(a),x — a) par
o(z) > p(a)+ (N, z—a) ot a = p(a) + (\,u—a), avec A € R?, est 'équation en
(u, ) € R? x R d’un hyperplan "tangent" au graphe de ¢ en a. C’est-a-dire un
hyperplan passant par (a,p(a)) et tel que le graphe de ¢ soit entiérement dans
le demi-espace "supérieur" délimité par cet hyperplan.

En dimension 1 avec p(z) = 2%, on retrouve E(X?) > (EX)?, ¢’est-a-dire Var(X) > 0.
Avec ¢(z) = ¢, on obtient InEe®® > aEX, a € R.

En appliquant I'inégalité de Jensen a la fonction convexe p(z) = ||z||P, x € R? avec
p > 1 (voir 'Exercice D.7), on obtient ||[EX||? < E[||X|]?],p > 1. Avec p = 1, nous avons
IEX|| < E||X]|| et en regroupant ces résultats :

IEX| < EIX| <E[IX[7]?, p>1.
COROLLAIRE 13.6. Soient 0 < p < q et X une variable aléatoire sur R? telle que

E[|| X1|9] < oo. Alors,
E[| X|IP]77 < E[|| x|,

DEMONSTRATION. La fonction ¢(y) = y¥?, y > 0 est convexe puisque q/p > 1.
Avec Y = || X||?, nous avons || X||9 = ¢(Y) et avec I'inégalité de Jensen : E[| X||P]9/? =
o(EY) < Ep(Y) = E[|| X|P*%?] = E[|| X||9] qui est le résultat annoncé. O

En particulier, avec 1 = p < ¢ nous retrouvons E|| X || < E[|| X||9]*/.



ANNEXE A

Dénombrabilité

Un ensemble est dénombrable si on peut le dénombrer, c¢’est-a-dire coller un numéro
distinct sur chacun de ses éléments. L’ensemble de tous les numéros possibles étant
I’ensemble N des entiers naturels, nous arrivons a la définition abstraite suivante.

DEFINITION A.1. Un ensemble E est dit dénombrable s’il existe une injection de F
dans N.

REMARQUES A.2.

(1) Appelons ¢ : E — N une telle injection. Alors son application réciproque ¢~
t(E) — FE est une bijection, c’est application qui a tout numéro pris dans
t(E) C N associe un élément unique de E.

1.

(2) Bien str, tout ensemble fini est dénombrable et N est dénombrable.

(3) De méme, tout sous-ensemble d’un ensemble dénombrable est dénombrable et
par contraposition, tout ensemble contenant une partie non-dénombrable est
non-dénombrable.

(4) Si deux ensembles sont en bijection, ils sont soit dénombrables tous les deux,
soit non-dénombrables tous les deux.

EXERCICE A.3. Montrer que Z est dénombrable.

SOLUTION. On numérote les entiers relatifs dans ’ordre suivant :
0,1,-1,2,—-2,3,...,n,—n,... Il s’agit de l'application f :Z — N, := {1,2,...} définie
par f(n) = 2n et f(—n) = 2n + 1 pour tout n > 1 et f(0) = 1. Elle est bijective de Z
sur N,. O

PROPOSITION A.4. Le produit cartésien d’un nombre fini d’ensembles dénombrables
est dénombrable.

DEMONSTRATION. Par récurrence, il suffit de montrer ce résultat pour le produit
de deux ensembles dénombrables. Compte tenu de la définition de la dénombrabilité, il
suffit pour cela de montrer que N? est dénombrable. Le procédé de numérotation de N?
suivant
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permet de voir que N? est en bijection avec N. 0

L’exercice et la proposition précédents nous permettent de voir que pour tout d > 1,
Z% est dénombrable. On en déduit que I’ensemble des nombres rationnels Q est aussi
dénombrable. En effet, & tout 2 € Q on associe le couple d’entiers (p,q) € Z x N, tels
que z = p/q soit une fraction irréductible. Cette application est clairement une injection
de Q dans Z x N, C Z? qui est dénombrable.

PROPOSITION A.5. Une réunion dénombrable d’ensembles dénombrables est dénom-
brable.

DEMONSTRATION. Soient (E;);c; une collection dénombrable (I’ensemble I des in-
dices est dénombrable) d’ensembles dénombrables. On peut sans perte de généralité
prendre I C N. D’autre part chacun des F; est en injection dans N : on peut décrire
E; = {a};j € J(i)} avec J(i) C N. Par conséquent (J;c; E; = {%; (4, 5) : i elje J(i)}.
L’application qui a tout z de |J,.; £ associe un couple (7,7) tel que x; = x est une
injection de (J;c; E; dans {(¢,7) : i € I,j € J(i)} C N% Puisque, d’aprés la Proposition
A4, N? est dénombrable, il en est de méme pour |J,.; E;. O

Nous allons voir a la Proposition A.8 plus bas qu’aucun intervalle réel d’intérieur non-
vide n’est dénombrable. Pour cela nous aurons besoin du résultat préliminaire suivant.

LEMME A.6. Soit X un ensemble non vide et 2% ’ensemble de toutes les parties de
X. Il n'existe pas d’injection de 2% dans X.

DEMONSTRATION. On fait une preuve par ’absurde. Supposons qu’il existe une in-
jection de 2% dans X. Alors, il existe une partie ) de X et une application P : ) — 2%
qui est bijective. L’application P permet de nommer les parties de X a l'aide des élé-
ments du sous-ensemble ) de X.

Considérons la partie

A={ye Y,y & Py}

ainsi que 'élément z = P71(A) € ).

— Soit z € A = P(z), mais ceci est impossible par définition de A;

— Soit z ¢ A = P(z) et par définition de A : z € P(z), ce qui est contradictoire.
Les deux cas sont exclus, par conséquent notre hypothése de départ est impossible : il
n’existe donc aucune injection de 2% dans X. 0

Cette preuve est due & Bertrand Russel, philosophe, humaniste et grand mathéma-
ticien britannique du XX-iéme siécle. Elle est basée sur le paradoxe suivant, énoncé par
lui : "Le barbier rase tous les hommes de son village qui ne se rasent pas eux-mémes”.

LEMME A.7. Soit A un ensemble fini contenant au moins deuz éléments.

(1) L’ensemble des suites finies composées d’éléments de A est dénombrable.

(2) L’ensemble AN des suites infinies composées d’éléments de A est non-dénombrable.
On peut voir A comme un alphabet : un ensemble de lettres et toute suite finie comme

un mot de taille finie composé avec cet alphabet. Les suites infinies sont des mots de
taille infinie. ce sont toutes les applications de N, dans A.
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DEMONSTRATION. e Preuve de (1). En notant S,, 'ensemble des suites de longueur
n et Sy 'ensemble des suites finies, on a Sy = U,>1.5, qui est dénombrable d’aprés la
Proposition A.5, puisque réunion dénombrable d’ensembles finis : #(S,,) = #(A)" < co.

e Preuve de (2). Du fait que #(A) > 2, il suffit de montrer que I'ensemble {0, 1} des
suites infinies composées de 0 et de 1 n’est pas dénombrable. En effet, en choisissant deux
éléments distincts ag et a; de A, on voit immédiatement que 'application qui a la suite
(€n)nen dans {0, 1} associe la suite (a, )ney dans {ag,a; }" est une bijection de {0, 1}
sur {ag, a }"¥. C’est donc une injection de {0, 1} dans AN.

Or {0,1}" est en bijection avec 'ensemble 2V des parties de N : a la suite (€,)nen
on associe la partie {n € N;¢, = 1}. Mais on a vu au Lemme A.6 que 2 n’est pas
dénombrable, donc {0, 1} ne I'est pas non plus. O

Nous somme maintenant en mesure de prouver la

PROPOSITION A.8. Tout intervalle d’intérieur non-vide (i.e. de la forme (a,b) avec
—00 < a<b<400) est non-dénombrable. En particulier, R n’est pas dénombrable.

DEMONSTRATION. II suffit de montrer que le segment [0, 1] n’est pas dénombrable.
Car alors la bijection x € [0,1] — a+ (8 —a)z € [a, §] nous assure qu’il en est de méme
pour [a, §]. Tout intervalle d’intérieur non-vide (a,b) contient un tel segment [, ] (il
suffit pour cela que a < a < 3 < b) et est de ce fait non-dénombrable.

Montrons que [0, 1] n’est pas dénombrable. Tout z € [0, 1] admet un développement

décimal x = 0, x1xoxs - -+ infini (avec éventuellement z, = 0 pour tout n a partir d'un
certain rang) ou l'on adopte la convention que si le développement se termine par une
succession infinie de 9, c¢’est-a-dire si = ag---a;9999--- avec 0 < a < 8, on rem-

place ce développement décimal par 0,a; - - ag_1(ag + 1)0000--- En effet 0,9999- . =
93,51 (1/10)" = 971418 = 1 = 1,0000- - On note D(z) = (z1,22,...) € {0,...,9}"

1-1/10
la suite correspondant & ce développement décimal unique.
Notons G l’ensemble des suites finies (ay,...,a;) d’éléments de {0,1,...,9} dont le
dernier terme ay, est différent de 9. L’ensemble des x concernés par la modification précé-

dente du développement décimal est I’ensemble des x de la forme x = a; - - - ax9999 - - - .

Il est clairement en bijection avec G. Par conséquent, D : [0,1] — {0,...,9}\ G est
une bijection. Or, d’aprés la Proposition A.7, {0,..., 9} est non-dénombrable et G
est dénombrable (en tant que sous-ensemble des suites finies) donc {0,..., 9} \ G est

non-dénombrable et il en est de méme pour [0, 1]. O






ANNEXE B

Eléments de théorie de l’intégration

Nous reprenons la notion d’espérance en introduisant (sans preuves) les résultats
fondamentaux de la théorie de l'intégrale de Lebesgue.

Notations. Nous avons déja rencontré les espérances des variables aléatoires dis-
crétes

E(X) =Y apx(z)
et des variables aléatoires continues
E(X) = / zfx(z)dz.
R
Dans les deux cas, la fonction de répartition Fy permet le calcul :
E(X) = Y xAFx(z)on AFx(x) = Fx(z) — Fx(z")
E(X) = /ZL‘dFX([E) ou dFx(z) = fx(z)dx
R
Ceci nous suggere la notation unifiée
E(X) = / rdFx(z).
R

Ainsi, nous obtenons aussi
B(p(X)) = | olz) dFx(o).

Intégration abstraite. L’espérance de X est déterminée par la fonction de répar-
tition F'y et puisque Fy est elle-méme spécifiée par la donnée de X et de (€2, .4,P) on
s’attend & ce qu'une notion générale d’espérance de X puisse étre définie a partir des
données (2, A,P) et X : Q2 — R.

La variable aléatoire X : Q — R est dite simple si elle prend un nombre fini de
valeurs. Les variables simples s’écrivent donc

X = zn:l’z]_Al
i=1

ou Ay, ..., A, est une partition de Q. On définit 'intégrale de X, notée E(X), par

E(X) = Z 2 P(A;).
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Toute variable aléatoire positive X : € — [0, co] est limite croissante d’une suite (X,,)n>1
de variables aléatoires simples. C’est-a-dire : X, (w) T X (w) pour tout w € 2. On définit
alors l'intégrale de X par
E(X) = lim E(X,) € [0, cc].
n—oo

Cette quantité, qui est éventuellement infinie, existe en tant que limite d’une suite crois-
sante et est non-ambigiie : on peut montrer qu’elle ne dépend pas de la suite croissante
approximante (X,,),>1.

Pour toute variable aléatoire X, notons pour tout w € €2,
X1 (w) = max(X (w),0) et X~ (w) = max(—X (w),0)
de sorte X = X+t — X~ avec X7, X~ > 0.
Si E(XT) et E(X ™) ne sont pas infinis simultanément, on définit

E(X)=EX") —E(X") € [-o0, +0].
C’est en particulier le cas lorsque
E(|X]) =E(X" +X") < oo.

En théorie de la mesure on note
E(X) = / X(w)P(dw) = / X dP.
9] 0

L’opération E est donc un opérateur qui agit sur I’ensemble des variables aléatoires X
telles que E(|X|) < oco. On montre que pour de telles variables aléatoires X,Y et pour
tous a,b € R,
E(aX +bY) = aE(X) 4+ DE(Y)
c’est-a-dire que 'ensemble des variables aléatoires X telles que E(|X|) < oo est un espace
vectoriel et que [E est une forme linéaire qui agit sur cet espace vectoriel.
Les propriétés de continuité de 1'espérance mathématique sont les suivantes.

THEOREME B.1 (Théorémes de continuité de E.). Soit (X,,),>1 une suite de variables
aléatoires qui converge simplement vers X : lim,, . X,(w) = X(w), pour tout w € Q,
alors

(1) (convergence monotone) si (X,,),>1 est une suite positive et croissante, alors

lim E(X,) = E(X) € [0,];
(2) (convergence dominée) si |X,(w)| < Y(w), pour tout w € Q et E(Y) < oo,
alors

lim E(X,) =E(X) € R;

n—oo

(3) (convergence bornée) sl existe ¢ € R tel que | X,,(w)| < ¢, pour tout w € ,
alors
lim E(X,) =E(X) € R.
n—oo
La convergence bornée est bien stir un cas particulier de convergence dominée.
Des conséquences directes du théoréme de convergence dominée sont les deux résultats
suivants.
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THEOREME B.2 (Continuité par rapport au paramétre). Soit X (t,w) une fonction sur
R x Q telle que pour tout t € R, X(t,-) soit P-intégrable et pour tout w, t — X(t,w) € R
soit continue en t,.

Si de plus, il existe § > 0 et une variable aléatoire Y > 0 telle que E(Y) < oo et
SUDyeft,—ot040] | X (£, W) < Y (w), pour tout w € Q, alors

t—E(X(t,-) €R
est continue en t,.

THEOREME B.3 (Dérivation sous le signe somme). Soient T' un ensemble ouvert de
R et X(t,w) une fonction sur T x Q telle que pour tout t € T, X (t,-) soit P-intégrable
et pour tout w, t € T — X (t,w) € R soit dérivable. On note L X (t,w) cette dérivée.
Si de plus, il existe 6 > 0 et une variable aléatoire Y > 0 telle que E(Y) < oo et
SUDye 1, —6,t0+6] |LX(t,w)| <Y (w), pour tout w € Q, alors
G:teT—E(X(t,)eR
est dériwable en t, et sa dérivée est donnée par
d
—X(t, )=, )-
SX (0 )imr,)
Intégrale de Lebesgue-Stieltjes. Elle peut apparaitre comme le cas particulier de
I'intégrale abstraite (de Lebesgue) avec 2 = R. Plus precisément, soit X une variable

aléatoire de fonction de répartition F. On fabrique a partir de F' une mesure de probabilité
pr sur la tribu de Borel de R comme suit.

(a)  définir pp(la, b)) = F(b) = F(a),
(b) étendre le domaine de définition de pupr & la plus petite tribu de R contenant
tous les intervalles : la tribu de Borel B.

G'(to) = E(

Ainsi, (R, B, ) est un espace de probabilité et

/@duF

est appelée l'intégrale de Lebesgue-Stieltjes de ¢ par rapport & pur. On la note habituel-
lement

/ o dF ou / () dF ().

Si X est une variable aléatoire discréte ou continue, on reconnait alors

wanz/w@mmm.

On prend cette égalité comme la définition générale de 'espérance de la variable aléatoire
©(X) (que X soit discréte, continue ou autre).

Une notation bien pratique, avec A € B :
Bllxene(X) = [ 1xenp) P = [ o) = [ o@)dF(a)
) {XeA} A
On remarque en passant que

E(Lveay) = B(X € A) = jup(A).






ANNEXE C

Espérance mathématique sans théorie de l'intégration

La notion d’espérance mathématique a été introduite sans ambiguité dans le cadre des
variables aléatoires discrétes, voir (6.13). Rappelons que pour tout couple aléatoire discret
(X,Y) prenant ses valeurs dans R? et telles que 3, |[2[px(z) < oo et D .y |ylpy (y) <
oo, I'espérance mathématique de a X + bY est définie par

E(aX +bY) = Y (az +by)pxy(z,y).

reX yey
Elle posséde les propriétés suivantes :
(C.1) E(aX +bY) = aEX 4+ bEY, a,b € R (linéarité)
(C.1) si X>0, EX >0 (positivité)
(C.17) E(1)=1 (normalisation).

Notre but est de construire une extension de l'opérateur : X — E(X), a une classe
de variables aléatoires X a valeurs réelles plus générale que celle des variables discreétes.
Nous allons montrer que lorsqu’on impose a cette extension de satisfaire les propriétés
(C.1), elle est unique sur la classe considérée.

Soit X — E(X) une extension de I'espérance qui posséde les propriétés (C.1). Cet
opérateur est croissant au sens ou :

(C.2) X <Y = E(X) <E(Y).
En effet, avec (C.1) et (C.1") : E(Y) — E(X) =E(Y — X) > 0. On en déduit que
(C.3) [E(X)] < E(]X]).

Pour décrire la classe sur laquelle ’extension de I’espérance est calculée, nous introduisons
I’ensemble fonctionnel suivant.

DEFINITION C.4. La classe ¥ est I’ensemble des fonctions de ]0, 1[ dans R qui sont
bornées et dont ’ensemble des points de discontinuité est dénombrable et admet un
nombre fini de points d’accumulation.

THEOREME C.5. Soit X — E(X) un opérateur qui prolonge l’espérance mathématique
des variables aléatoires discrétes a des variables aléatoires plus générales et qui posséde
les propriétés (C.1). Soit U une variable aléatoire de loi uniforme sur [0,1]. Alors, pour
toute fonction 1 dans W,

B(0(0) = [ v du
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DEMONSTRATION. On se replace dans le cadre de la suite des tirages indépendants
uniformes sur {0, ...,9} étudié au Chapitre 10. On considére maintenant les approxima-
tions discrétes de U définies pour tout n > 0 par

Up(w) =0,wy ... wy.

Cette variable aléatoire est discréte : elle prend chacune des 10" valeurs w,; = 107"k,
(0 <k < 10" —1) avec la probabilité 10~™. Soit 1) une fonction numérique quelconque
sur ]0, 1[. Son espérance mathématique est

E@U)) = > 107"%(uns).

0<k<10m—1

Cette somme est 'intégrale de Riemann d’une fonction en escalier qui approxime . On
en déduit que si ¢ est intégrable au sens de Riemann,

n—oo

(C.6) lim E(u(U,)) = /0 () du,

On suppose pour le moment que v :]0, 1[— R est continue et bornée. Puisqu’elle admet
un prolongement continu sur le compact [0, 1]; elle est absolument continue, c¢’est-a-dire
que wy(0) := sup{|y(u) = (v)]; u,v tels que [u—v| < 0} tend vers zéro lorsque § décroit
vers zéro. D’autre part, puisque sup,,~ |U — U,| < 107",

E[p(U)] = E[p(Un)]] = [E[p(U) = ¢ (Un)]] avec (C.1)
< E[l4(U) — ¢ (Un)l] avec (C.3)
< ]E[ww(ili% U — Uy|)] avec (C.2)
< Efw, (1077)] avec (C.2)
= wy(107") avec (C.1) et (C.17)

D’ou il vient que

(eky E[(U)] = lim E[p(U,)]
En rapprochant cette identité de (C.6), nous obtenons le résultat désiré lorsque 1 est
continue :

B(00) = [ v i

Il reste & étendre cette identité au cas général : ) € W.

Soit ¢ € W. Son ensemble de points de discontinuité est tel que pour tout € > 0, il
existe une réunion finie d’intervalles qui le recouvre, que nous noterons A. et dont la lon-
gueur totale |A.| est inférieure a e. Il est clair que la restriction de 1) au complémentaire
de A. admet un prolongement continu sur [0, 1] (on peut procéder a une série d’inter-
polations linéaires entre les bornes de A.). Notons 1. cette approximation continue de
1. Puisque 1 est bornée, c’est-a-dire : K := supy,<; |¥(u)| < 0o, on peut choisir 1. de
méme borne kK que v et nous obtenons o

[p(u) — o (u)| < 261 (uea,), u €]0,1].
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Par conséquent,

E[(U)] - El.(U))

ELwgan(4(U) = ve(U)] + Ellwean ($(U) = -(0))

= [Elwean (@) = v(0))]
2kP(U € Ae)

= 2H|A€|

2Kke

IN

IA

ou l'on a fait usage d’arguments similaires & ceux invoqués lors de la preuve de (C.7),
ainsi que de E[Lyea,] = P(U € A.) (1wea.) est une variable discréte dont on connait
I'espérance) et de P(U € A.) = |A.| (puisque P(a < U <b) =b—a).

Des arguments analogues nous ménent a

‘/011/1(7«0) du — /01 e (u) du‘ < ke,

de sorte que pour tout €,

@l - [ vede] < (Bl - [ vt + e
= 4ke,

puisque, . étant continue, nous avons montré plus haut que E[i).(U)] = fol e (u) du. La
preuve s’achéve en faisant tendre ¢ vers zéro. 0

Nous allons donner plus bas une définition de ’espérance mathématique pour une
classe de variables aléatoires continues assez générale. Compte tenu du Théoréme 10.3,
toute variable aléatoire X admet le méme comportement aléatoire (la méme loi) que
F3H(U). Par conséquent, ¢ étant une fonction numérique, il est loisible d’écrire E(p(X)) =
E(po Fx'(U)). Le Théoréme C.8 plus bas est une conséquence immédiate du Théoréme
C.5.

Nous sommes en mesure d’énoncer le théoréme suivant.

THEOREME C.8. Soit X +— E(X) un prolongement de l’espérance des variables aléa-
toires discrétes a une classe plus générale de variables aléatoires qui satisfait les proprié-
tés (C.1). Soit X une variable aléatoire de fonction de répartition Fx et ¢ une fonction
numérique. Si p o F5' est dans la classe U, alors

EW@D{A@“HWMM

C’est en particulier le cas lorsque F);l est dans la classe U et ¢ est bornée et continue
par Morceaur.

REMARQUE C.9 (Au sujet des points de discontinuité de Fi'.). La fonction Fy' est
croissante et continue & gauche. Nous notons (Fy ' (u)) l'intervalle semi-ouvert [Fy ! (u), Fx' (u™)].
Il est non vide si et seulement si u est un point de discontinuité de F5;'. Dans ce cas nous
disons que (Fy'(u)) est un intervalle d’absence de X. Cette terminologie est justifiée
par la constatation que lorsque a, = Fy'(u) < Fyx'(u") := by, la fonction Fy est plate
sur 'intervalle [ay, b,[, plus précisément : [a,, b,[C {z € R; Fx(z) = u} C [ay,b,]. Ceci
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implique que P(X € [a,,b,[) = 0, et que pour tout a > 0, P(X €la, — «,b,[) > 0 et
P(X €lay, b, + af) > 0.

La formule assez générale du Théoréme C.8 n’est pas trés parlante. Nous allons 1'élu-
cider les variables aléatoires continues. Pour une variable aléatoire continue, un intervalle
d’absence correspond & un intervalle maximal (composante connexe) de I'ensemble des
points d’annulation de fx. Pour que Fi' soit dans la classe ¥, il suffit que X admette un
nombre fini d’intervalles d’absence. On en déduit que si I'ensemble {z € R; fx(z) = 0}
est une réunion finie d’intervalles, la fonction Fy ! est dans la classe U.

Supposons maintenant que X admette une fonction de densité fx continue par mor-
ceaux. Dans ce cas, Fy est partout continue donc r = Fi'(u) <= u = Fx(z); de plus,
sauf en un nombre fini de points, nous avons F% (x) = fx(x).

La formule de changement de variable dans l'intégrale, nous permet en posant z =
Fit(u) "d’inje(;ger” du = F(z)dr = fx(x)dx. Ce qui nous donne E(p(X)) = fol @ o
Fy'(u)du = [7_¢(z)fx(z) dz. L'ensemble de ces considérations nous ameénent au ré-
sultat suivant.

THEOREME C.10. Soit X +— E(X) un prolongement de l'espérance des variables
aléatoires discrétes a une classe plus générale de variables aléatoires qui satisfait les
propriétés (C.1). Soit X une variable aléatoire continue dont la densité fx est continue
par morceauz et telle que {x € R; fx(x) =0} est une réunion finie d’intervalles. Soit ¢
une fonction numérique bornée et continue par morceauz, alors

E(¢()) = [ pla)fxla) d



ANNEXE D

Convexité

On se place dans I'espace vectoriel R

DEFINITIONS D.1 (Ensemble et fonction convexes). Pour tous z,y € R? on note
[z,y] le segment qui relie x et y, cest-a-dire [z,y] = {(1 — t)z + ty;0 < ¢t < 1}.

(1) On dit qu'une partie C' de R? est convexe si
(D.2) Vao,y eRY 2,y € C = [x,y] C C.
(2) On dit que la fonction ¢ : C' — R est convexe sur 'ensemble convexe C' si

(D.3) Ve,y e CVO <t <1,o((1 -tz +ty) < (1 —t)p(z) + to(y).

Dans la figure suivante, C' est une partie convexe du plan alors que A ne l'est pas
puisque [a,b] ¢ A bien que a,b € A :

O

convexe non convexe

EXERCICE D.4. Montrer que les parties convexes de R sont les intervalles.

La propriété (D.3) signifie que toutes les cordes liant deux points du graphe de la
fonction convexe ¢ sont situées au-dessus du graphe. C’est ce qu’illustre la figure suivante.

corde ?
oY) =%

- e 10|\ / graphe de ¢
p(z) \/

z (_\_j Y C

(1—t)x+ty

Dans la figure suivante, le graphe de gauche est celui d’'une fonction convexe puisque
toutes ses cordes sont situées au-dessus, alors que celui de droite est celui d’une fonction
non-convexe.
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\

T
convexe C non convexe C

Deux graphes fonctionnels

PROPOSITION D.5. Soit ¢ : C'— R une fonction dérivable sur une partie ouverte et
conveze C' de R?. Les assertions suivantes sont équivalentes.

(a) ¢ est conveze sur C.
(b) Pour tous x,y € C, ¢(y) = () + (¢'(x),y — x)

ot ¢'(x) = (8%‘%(95), cee %‘%(m)) est le gradient de ¢ en x et (u,v) est le produit scalaire
de u et v dans RY.

Dans le cas particulier o R? = R, si de plus ¢ est une fonction sur un intervalle
owvert I C R, deuz fois continiment différentiable (de classe C?), alors les assertions
(a) et (b) sont aussi équivalentes a

(¢) Pour tout x € I, ¢"(x) > 0.

La partie C' est supposée ouverte pour pouvoir définir sans encombre la dérivée de .
La propriété (b) signifie que le graphe de ¢ se situe au-dessus de tous ses hyperplans
tangents.

graphe de

r Y C

DEMONSTRATION. e Preuve de (a) = (b). (a) exprime que pour tous z,y € C et
tout 0 < ¢ < 1, p(x +t(y — x)) < () + tlp(y) — (x)]]. Dot en prenant ¢ > 0,
[o(x+tly—z)) —e(x)]/t < py) —p(z), et en le faisant tendre vers 0 : (¢'(x),y —z) <
o(y) — p(x), c’est-a-dire (b).

e Preuve de (b) = (a). Par 'absurde. Supposons que (b) soit satisfait et que (a) ne le
soit pas. Nous allons montrer une contradiction. Puisque (a) n’est pas satisfait, il existe
0<t<1tel que

(D.6) p(zr) > (1 —t)p(z) + to(y).

L’hyperplan tangent au graphe de ¢ en z; := (1 — t)z + ty a pour équation avec les
coordonnées (u, ) € R x R: a = @(z) + (\,u — x;) o A = ¢(x;) € R Puisque (b)
est supposé vrai, nous avons en  :

(X) ploe) + (Ao —x) = o) = Aty — 7)) < p(2)
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et en y:

(Y) plae) + Ay =) = o) + (A (1 =1)(y — 7)) < ¢(y)

En faisant (1 — ¢)(X) + ¢(Y), nous obtenons p(z;) < (1 — t)¢(x) + te(y) qui contredit
(D.6).

e Preuve de (b) = (c). Prenons y — x = th avec t > 0 de sorte que (b) nous donne
o(x +th) — p(z) — @' (z)th > 0. D’autre part, puisque ¢ est C?, il existe 0 < 0 < 1 tel
que @(z +th) — (z) — ¢'(z)th = ¢"(x + 0th)t* /2. On en déduit que ¢"(x + Oth) > 0 et
en faisant tendre ¢ vers 0, nous obtenons grace a la continuité de ¢” que ¢"(z) > 0.

. Preuve de (c) = (b). Puisque gp > 0, ¢’ est croissante et pour tous z < y, ¢(y)
2) + [V (2)dz > p(x) + [V dz—so()ﬂo()(y z). Lorsque y < z, p(y) =
r)+ [, ¢(2) dz = <>—fyso<> dz > p(x) + [ ¢'(x) dz = () + ¢'(2)(y — 7). Ce

qul prouve (b) et achéve la preuve de la proposition.

O

Dans la figure suivante, le graphe de gauche est celui d’'une fonction convexe puisque
toutes ses tangentes sont situées au-dessous, alors que celui de droite est celui d’une
fonction non-convexe.

convexe C non convexe C
Deux graphes fonctionnels

EXERCICE D.7. Montrer que les fonctions suivants sont convexes.
(a) p(z) =azx+b, z € R, avec a,b € R.
(b
(c

) ¢
) ez
) ¢
(d) ¢
) ¢
) ¢
) ¢

|z|P, x € R, avec p > 1.
—aP, x € [0,00], avec 0 < p < 1.

(z) =
(z) =
(x) =e™, z € R, avec a € R.
(z) =
(z) =

(e) p(z) =azlnzr—az+1,x>0.
(f) p(z) = —Inz, 2 > 0.
(g) o(x) = ||z|, € R? une norme sur R%.
Par exemple, ||z| = (z2+ - -+22)Y2 ou ||z|| = |z1|+- - -+ |74 ou ||z]| = max;<i<q |zl
(h) o(z) = ¥(||lz|)), z € R? ott || - || est une norme sur R? et 1) est une fonction convexe

croissante sur [0, 0ol
En particulier, ¢(z) = ||z]|P, = € RY, avec p > 1.
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